Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Cell Rep ; 43(3): 113869, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38431843

ABSTRACT

Autoimmune diseases strain healthcare systems worldwide as their incidence rises, and current treatments put patients at risk for infections. An increased understanding of autoimmune diseases is required to develop targeted therapies that do not impair normal immune function. Many autoimmune diseases present with autoantibodies, which drive local or systemic inflammation. This indicates the presence of autoreactive B cells that have escaped tolerance. An important step in the development of autoreactive B cells is the germinal center (GC) reaction, where they undergo affinity maturation toward cognate self-antigen. Follicular dendritic cells (FDCs) perform the essential task of antigen presentation to B cells during the affinity maturation process. However, in recent years, it has become clear that FDCs play a much more active role in regulation of GC processes. Here, we evaluate the biology of FDCs in the context of autoimmune disease, with the goal of informing future therapeutic strategies.


Subject(s)
Autoimmune Diseases , Dendritic Cells, Follicular , Humans , Autoimmunity , Germinal Center , B-Lymphocytes
2.
Eur J Immunol ; 54(1): e2350422, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37873698

ABSTRACT

Utilizing an autoimmune bone marrow chimera model we determined that B cells depend critically on MHCII expression for participation in the germinal center, but cells displaying a 50% reduction in surface MHCII compete efficiently with their wild-type counterparts. This provides insights into the requirements for germinal center participation.


Subject(s)
B-Lymphocytes , Germinal Center
3.
Front Immunol ; 14: 1258046, 2023.
Article in English | MEDLINE | ID: mdl-38090594

ABSTRACT

Introduction: MHC class II molecules are essential for appropriate immune responses against pathogens but are also implicated in pathological responses in autoimmune diseases and transplant rejection. Previous studies have shed light on the systemic contributions of MHC haplotypes to the development and severity of autoimmune diseases. In this study, we addressed the B cell intrinsic MHC haplotype impact on follicular inclusion, germinal center (GC) participation and plasma cell (PC) differentiation in the context of systemic lupus erythematosus (SLE). Methods: We leveraged the 564Igi mouse model which harbors a B cell receptor knock-in from an autoreactive B cell clone recognizing ribonuclear components, including double-stranded DNA (dsDNA). This model recapitulates the central hallmarks of the early stages of SLE. We compared 564Igi heterozygous offspring on either H2b/b, H2b/d, or H2d/d background. Results: This revealed significantly higher germinal center (GC) B cell levels in the spleens of H2b/b and H2b/d as compared to H2d/d (p<0.0001) mice. In agreement with this, anti-dsDNA-antibody levels were higher in H2b/b and H2b/d than in H2d/d (p<0.0001), with H2b/b also being higher compared to H2b/d (p<0.01). Specifically, these differences held true both for autoantibodies derived from the knock-in clone and from wild-type (WT) derived clones. In mixed chimeras where 564Igi H2b/b, H2b/d and H2d/d cells competed head-to-head in the same environment, we observed a significantly higher inclusion of H2b/b cells in GC and PC compartments relative to their representation in the B cell repertoire, compared to H2b/d and H2d/d cells. Furthermore, in mixed chimeras in which WT H2b/b and WT H2d/d cells competed for inclusion in GCs associated with an epitope spreading process, H2b/b cells participated to a greater extent and contributed more robustly to the PC compartment. Finally, immature WT H2b/b cells had a higher baseline of BCRs with an autoreactive idiotype and were subject to more stringent negative selection at the transitional stage. Discussion: Taken together, our findings demonstrate that B cell intrinsic MHC haplotype governs their capacity for participation in the autoreactive response at multiple levels: follicular inclusion, GC participation, and PC output. These findings pinpoint B cells as central contributors to precipitation of autoimmunity.


Subject(s)
Autoimmune Diseases , Lupus Erythematosus, Systemic , Animals , Mice , Haplotypes , Germinal Center , Lupus Erythematosus, Systemic/genetics , Cell Differentiation
4.
Cancer Lett ; 579: 216480, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37931834

ABSTRACT

Glioblastoma (GBM) is an aggressive brain tumor with a median survival of 15 months and has limited treatment options. Immunotherapy with checkpoint inhibitors has shown minimal efficacy in combating GBM, and large clinical trials have failed. New immunotherapy approaches and a deeper understanding of immune surveillance of GBM are needed to advance treatment options for this devastating disease. In this study, we used two preclinical models of GBM: orthotopically delivering either GBM stem cells or employing CRISPR-mediated tumorigenesis by adeno-associated virus, to establish immunologically proficient and non-inflamed tumors, respectively. After tumor development, the innate immune system was activated through long-term STING activation by a pharmacological agonist, which reduced tumor progression and prolonged survival. Recruitment and activation of cytotoxic T-cells were detected in the tumors, and T-cell specificity towards the cancer cells was observed. Interestingly, prolonged STING activation altered the tumor vasculature, inducing hypoxia and activation of VEGFR, as measured by a kinome array and VEGF expression. Combination treatment with anti-PD1 did not provide a synergistic effect, indicating that STING activation alone is sufficient to activate immune surveillance and hinder tumor development through vascular disruption. These results guide future studies to refine innate immune activation as a treatment approach for GBM, in combination with anti-VEGF to impede tumor progression and induce an immunological response against the tumor.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Brain Neoplasms/immunology , Brain Neoplasms/metabolism , Glioblastoma/immunology , Glioblastoma/metabolism , Immunotherapy/methods , Tumor Microenvironment , Immunity, Innate
5.
Nat Commun ; 14(1): 6941, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37907556

ABSTRACT

Circumstantial evidence suggests that B cells may instruct T cells to break tolerance. Here, to test this hypothesis, we used a murine model in which a single B cell clone precipitates an autoreactive response resembling systemic lupus erythematosus (SLE). The initiating clone did not need to enter germinal centers to precipitate epitope spreading. Rather, it localized to extrafollicular splenic bridging channels early in the response. Autoantibody produced by the initiating clone was not sufficient to drive the autoreactive response. Subsequent epitope spreading depended on antigen presentation and was compartmentalized by major histocompatibility complex (MHC). B cells carrying two MHC haplotypes could bridge the MHC barrier between B cells that did not share MHC. Thus, B cells directly relay autoreactivity between two separate compartments of MHC-restricted T cells, leading to inclusion of distinct B cell populations in germinal centers. Our findings demonstrate that B cells initiate and propagate the autoimmune response.


Subject(s)
Antigen Presentation , Lupus Erythematosus, Systemic , Mice , Animals , Epitopes , Histocompatibility Antigens Class II/genetics , B-Lymphocytes , Major Histocompatibility Complex , Histocompatibility Antigens
6.
Cancers (Basel) ; 15(6)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36980716

ABSTRACT

More than 80% of human cancers originate in epithelial tissues. Loss of epithelial cell characteristics are hallmarks of tumor development. Receptor-mediated endocytosis is a key function of absorptive epithelial cells with importance for cellular and organismal homeostasis. LRP2 (megalin) is the largest known endocytic membrane receptor and is essential for endocytosis of various ligands in specialized epithelia, including the proximal tubules of the kidney, the thyroid gland, and breast glandular epithelium. However, the role and regulation of LRP2 in cancers that arise from these tissues has not been delineated. Here, we examined the expression of LRP2 across 33 cancer types in The Cancer Genome Atlas. As expected, the highest levels of LRP2 were found in cancer types that arise from LRP2-expressing absorptive epithelial cells. However, in a subset of tumors from these cancer types, we observed epigenetic silencing of LRP2. LRP2 expression showed a strong inverse correlation to methylation of a specific CpG site (cg02361027) in the first intron of the LRP2 gene. Interestingly, low expression of LRP2 was associated with poor patient outcome in clear cell renal cell carcinoma, papillary renal cell carcinoma, mesothelioma, papillary thyroid carcinoma, and invasive breast carcinoma. Furthermore, loss of LRP2 expression was associated with dedifferentiated histological and molecular subtypes of these cancers. These observations now motivate further studies on the functional role of LRP2 in tumors of epithelial origin and the potential use of LRP2 as a cancer biomarker.

7.
Nat Commun ; 14(1): 976, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36813795

ABSTRACT

Antigen binding by B cell receptors (BCR) on cognate B cells elicits a response that eventually leads to production of antibodies. However, it is unclear what the distribution of BCRs is on the naïve B cell and how antigen binding triggers the first step in BCR signaling. Using DNA-PAINT super-resolution microscopy, we find that most BCRs are present as monomers, dimers, or loosely associated clusters on resting B cells, with a nearest-neighbor inter-Fab distance of 20-30 nm. We leverage a Holliday junction nanoscaffold to engineer monodisperse model antigens with precision-controlled affinity and valency, and find that the antigen exerts agonistic effects on the BCR as a function of increasing affinity and avidity. Monovalent macromolecular antigens can activate the BCR at high concentrations, whereas micromolecular antigens cannot, demonstrating that antigen binding does not directly drive activation. Based on this, we propose a BCR activation model determined by the antigen footprint.


Subject(s)
Antigens , Receptors, Antigen, B-Cell , Receptors, Antigen, B-Cell/metabolism , B-Lymphocytes , Lymphocyte Activation , Signal Transduction
8.
Neoplasia ; 33: 100836, 2022 11.
Article in English | MEDLINE | ID: mdl-36095928

ABSTRACT

Breast cancer is a highly heterogeneous disease both at the histological and molecular levels. We have previously shown that RANK-c is a regulator of NF-κB signaling and exerts a suppressive effect on aggressive properties of ER negative breast cancer cells, while there is an opposite effect on ER positive cell lines. In order to identify molecular determinants that govern the opposing function of RANK-c in breast cancer cells we employed the two cell lines with the highest degree of phenotypic divergence upon RANK-c-expression (SKBR3 and BT474) and identified proteins that interact with RANK-c by affinity-enrichment mass spectrometry (AE-MS) analysis. Annotating enriched proteins with NF-κB signaling pathway revealed TRAF3 as an interacting partner of RANK-c in SKBR3 cell protein lysates, but not in BT474 breast cancer cells in which RANK-c induces cell aggressiveness. To determine the role of TRAF3 in the phenotype of BT474-RANK-c cells, we reconstructed the TRAF3/RANK-c interaction both in parental BT474 and RANK-c expressing cells and tested for aggressive properties through colony formation, migration and invasion assays. TRAF3 forced expression was able to reverse BT474 phenotypic changes imposed by RANK-c, rendering cells less aggressive. Finally, TRAF3 gene expression data and TRAF3 immunohistochemical (IHC) analysis on breast cancer samples indicated that TRAF3 expression correlates with Overall Survival (OS), Recurrence Free Survival (RFS) and several clinicopathological parameters (histological grade, proliferation index) of breast cancer disease.


Subject(s)
Neoplasms , TNF Receptor-Associated Factor 3 , Cell Line, Tumor , NF-kappa B/metabolism , Receptor Activator of Nuclear Factor-kappa B/genetics , Receptor Activator of Nuclear Factor-kappa B/metabolism , Receptor Activator of Nuclear Factor-kappa B/pharmacology , Signal Transduction , TNF Receptor-Associated Factor 3/genetics , TNF Receptor-Associated Factor 3/metabolism , TNF Receptor-Associated Factor 3/pharmacology
9.
J Neuroimmunol ; 370: 577927, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35858501

ABSTRACT

Maternally transferred autoantibodies can negatively impact the development and health of offspring, increasing the risk of neurodevelopmental disorders. We used embryo transfers to examine maternofoetal immune imprinting in the autoimmune BXSB/MpJ mouse model. Anti-double-stranded DNA antibodies and total immunoglobulins were measured, using allotypes of the IgG subclass to distinguish maternally transferred antibodies from those produced endogenously. Frequencies of germinal center and plasma cells were analysed by flow cytometry. Microglial morphology in offspring CNS was assessed using immunohistochemistry. In contrast to prior findings, our results indicate that BXSB/MpJ mothers display a mild autoimmune phenotype, which does not significantly impact the offspring.


Subject(s)
Lupus Erythematosus, Systemic , Animals , Antibodies, Antinuclear , Autoantibodies , Disease Models, Animal , Immunoglobulin G , Lupus Erythematosus, Systemic/genetics , Mice
10.
Biomolecules ; 13(1)2022 12 22.
Article in English | MEDLINE | ID: mdl-36671408

ABSTRACT

Primary endothelial cells (ECs), especially human umbilical vein endothelial cells (HUVECs), are broadly used in vascular biology. Gene editing of primary endothelial cells is known to be challenging, due to the low DNA transfection efficiency and the limited proliferation capacity of ECs. We report the establishment of a highly efficient and selection-free CRISPR gene editing approach for primary endothelial cells (HUVECs) with ribonucleoprotein (RNP) complex. We first optimized an efficient and cost-effective protocol for messenger RNA (mRNA) delivery into primary HUVECs by nucleofection. Nearly 100% transfection efficiency of HUVECs was achieved with EGFP mRNA. Using this optimized DNA-free approach, we tested RNP-mediated CRISPR gene editing of primary HUVECs with three different gRNAs targeting the HIF1A gene. We achieved highly efficient (98%) and biallelic HIF1A knockout in HUVECs without selection. The effects of HIF1A knockout on ECs' angiogenic characteristics and response to hypoxia were validated by functional assays. Our work provides a simple method for highly efficient gene editing of primary endothelial cells (HUVECs) in studies and manipulations of ECs functions.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Humans , Gene Editing/methods , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , DNA , Human Umbilical Vein Endothelial Cells/metabolism , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics
11.
Front Immunol ; 13: 1021370, 2022.
Article in English | MEDLINE | ID: mdl-36591222

ABSTRACT

Introduction: Many autoimmune diseases are characterized by germinal center (GC)-derived, affinity-matured, class-switched autoantibodies, and strategies to block GC formation and progression are currently being explored clinically. However, extrafollicular responses can also play a role. The aim of this study was to investigate the contribution of the extrafollicular pathway to autoimmune disease development. Methods: We blocked the GC pathway by knocking out the transcription factor Bcl-6 in GC B cells, leaving the extrafollicular pathway intact. We tested the impact of this intervention in two murine models of systemic lupus erythematosus (SLE): a pharmacological model based on chronic epicutaneous application of the Toll-like receptor (TLR)-7 agonist Resiquimod (R848), and 564Igi autoreactive B cell receptor knock-in mice. The B cell intrinsic effects were further investigated in vitro and in autoreactive mixed bone marrow chimeras. Results: GC block failed to curb autoimmune progression in the R848 model based on anti-dsDNA and plasma cell output, superoligomeric DNA complexes, and immune complex deposition in glomeruli. The 564Igi model confirmed this based on anti-dsDNA and plasma cell output. In vitro, loss of Bcl-6 prevented GC B cell expansion and accelerated plasma cell differentiation. In a competitive scenario in vivo, B cells harboring the genetic GC block contributed disproportionately to the plasma cell output. Discussion: We identified the extrafollicular pathway as a key contributor to autoimmune progression. We propose that therapeutic targeting of low quality and poorly controlled extrafollicular responses could be a desirable strategy to curb autoreactivity, as it would leave intact the more stringently controlled and high-quality GC responses providing durable protection against infection.


Subject(s)
Autoimmunity , Lupus Erythematosus, Systemic , Mice , Animals , B-Lymphocytes , Germinal Center , Plasma Cells
12.
Front Immunol ; 12: 782558, 2021.
Article in English | MEDLINE | ID: mdl-34938294

ABSTRACT

Germinal centers (GCs) are induced microanatomical structures wherein B cells undergo affinity maturation to improve the quality of the antibody response. Although GCs are crucial to appropriate humoral responses to infectious challenges and vaccines, many questions remain about the molecular signals driving B cell participation in GC responses. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is an important mediator of type I interferon and proinflammatory cytokine responses during infection and cellular stress. Recent studies have reported important roles for STING in B cell responses, including an impact on GC B cells and downstream antibody responses, which could have great consequences for vaccine design and understanding STING-associated interferonopathies. GCs are also involved in untoward reactions to autoantigens in a plethora of autoimmune disorders, and it is generally thought that these responses coopt the mechanisms used in foreign antigen-directed GCs. Here, we set out to investigate the importance of the cGAS-STING pathway in autoreactive B cell responses. In a direct competition scenario in a murine mixed bone marrow chimera model of autoreactive GCs, we find that B cell intrinsic deficiency of cGAS, STING, or the type I interferon receptor IFNAR, does not impair GC participation, whereas Toll-like receptor (TLR)-7 deficiency mediates a near-complete block. Our findings suggest that physiological B cell responses are strictly sustained by signals linked to BCR-mediated endocytosis. This wiring of B cell signals may enable appropriate antibody responses, while at the same time restricting aberrant antibody responses during infections and in autoimmune or autoinflammatory settings.


Subject(s)
Autoimmunity , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Germinal Center/immunology , Germinal Center/metabolism , Membrane Proteins/metabolism , Signal Transduction , Animals , Biomarkers , Cell Line , Flow Cytometry , Humans , Immunohistochemistry , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mice , Mice, Knockout , Mice, Transgenic , Mutation , Nucleotidyltransferases/metabolism , Receptor, Interferon alpha-beta/metabolism , Toll-Like Receptor 7/metabolism
13.
Genes (Basel) ; 12(11)2021 10 23.
Article in English | MEDLINE | ID: mdl-34828291

ABSTRACT

BACKGROUND: We have previously shown that overexpression of RANK-c in ER-negative breast cancer cell lines attenuates aggressive properties of cancer cells, partially through a RANK-c/EGFR interaction. EGFR inhibition through TKIs in breast cancer has been tested in triple-negative disease settings with limited clinical benefit for patients. Here we test if expression of RANK-c in ER-negative breast cancer cells in conjunction with treatment with TK inhibitors (erlotinib or gefitinib) can affect survival and colony-forming capacity of cancer cells. METHODS: Stably expressing MDA-MB-231-RANK-c and SKBR3-RANK-c cells were employed to test proliferation and colony formation in the presence of TKIs. In addition, Western blot analysis was performed to dissect EGFR related signaling cascades upon TK inhibition in the presence of RANK-c. RESULTS: Interestingly the two RANK-c expressing, ER-negative cells lines presented with a distinct phenotype concerning TKI sensitivity upon treatment. MDA-MB-231-RANK-c cells had a higher sensitivity upon gefitinib treatment, while erlotinib decreased the proliferation rate of SKBR3-RANK-c cells. Further, colony formation assays for MDA-MB-231-RANK-c cells showed a decrease in the number and size of colonies developed in the presence of erlotinib. In addition, RANK-c seems to alter signaling through EGFR after TKI treatment in a cell type-specific manner. CONCLUSIONS: Our results indicate that ER-negative breast cancer cells that express RANK-c alter their sensitivity profile against tyrosine kinase inhibitors (erlotinib and gefitinib) in a cell type-specific and culture substrate-dependent manner.


Subject(s)
Alternative Splicing , Breast Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Receptor Activator of Nuclear Factor-kappa B/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , ErbB Receptors/metabolism , Erlotinib Hydrochloride/pharmacology , Female , Gefitinib/pharmacology , Humans , Receptors, Estrogen/metabolism
14.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Article in English | MEDLINE | ID: mdl-34301873

ABSTRACT

Nanotechnology enables investigations of single biomacromolecules, but technical challenges have limited the application in liquid biopsies, for example, blood plasma. Nonetheless, tools to characterize single molecular species in such samples represent a significant unmet need with the increasing appreciation of the physiological importance of protein structural changes at nanometer scale. Mannose-binding lectin (MBL) is an oligomeric plasma protein and part of the innate immune system through its ability to activate complement. MBL also serves a role as a scavenger for cellular debris, especially DNA. This may link functions of MBL with several inflammatory diseases in which cell-free DNA now appears to play a role, but mechanistic insight has been lacking. By making nanoparticle tracking analysis possible in human plasma, we now show that superoligomeric structures of MBL form nanoparticles with DNA. These oligomers correlate with disease activity in systemic lupus erythematosus patients. With the direct quantification of the hydrodynamic radius, calculations following the principles of Taylor dispersion in the blood stream connect the size of these complexes to endothelial inflammation, which is among the most important morbidities in lupus. Mechanistic insight from an animal model of lupus supported that DNA-stabilized superoligomers stimulate the formation of germinal center B cells and drive loss of immunological tolerance. The formation involves an inverse relationship between the concentration of MBL superoligomers and antibodies to double-stranded DNA. Our approach implicates the structure of DNA-protein nanoparticulates in the pathobiology of autoimmune diseases.


Subject(s)
DNA/chemistry , Lupus Erythematosus, Systemic/diagnosis , Nanoparticles/chemistry , Proteins/chemistry , Adolescent , Adult , Animals , B-Lymphocytes , Biomarkers , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Humans , Inflammation/metabolism , Inflammation/pathology , Mannose-Binding Lectin , Mice , Mice, Inbred C57BL , Protein Binding , Young Adult
15.
PLoS One ; 16(3): e0247501, 2021.
Article in English | MEDLINE | ID: mdl-33730087

ABSTRACT

Murine bone marrow (BM) chimeras are a versatile and valuable research tool in stem cell and immunology research. Engraftment of donor BM requires myeloablative conditioning of recipients. The most common method used for mice is ionizing radiation, and Cesium-137 gamma irradiators have been preferred. However, radioactive sources are being out-phased worldwide due to safety concerns, and are most commonly replaced by X-ray sources, creating a need to compare these sources regarding efficiency and potential side effects. Prior research has proven both methods capable of efficiently ablating BM cells and splenocytes in mice, but with moderate differences in resultant donor chimerism across tissues. Here, we compared Cesium-137 to 350 keV X-ray irradiation with respect to immune reconstitution, assaying complete, syngeneic BM chimeras and a mixed chimera model of autoimmune disease. Based on dose titration, we find that both gamma and X-ray irradiation can facilitate a near-complete donor chimerism. Mice subjected to 13 Gy Cesium-137 irradiation and reconstituted with syngeneic donor marrow were viable and displayed high donor chimerism, whereas X-ray irradiated mice all succumbed at 13 Gy. However, a similar degree of chimerism as that obtained following 13 Gy gamma irradiation could be achieved by 11 Gy X-ray irradiation, about 85% relative to the gamma dose. In the mixed chimera model of autoimmune disease, we found that a similar autoimmune phenotype could be achieved irrespective of irradiation source used. It is thus possible to compare data generated, regardless of the irradiation source, but every setup and application likely needs individual optimization.


Subject(s)
Autoimmune Diseases/immunology , Bone Marrow Cells/radiation effects , Bone Marrow Transplantation/methods , Bone Marrow/radiation effects , Cesium Radioisotopes , Gamma Rays , Radiation Chimera/immunology , Animals , Disease Models, Animal , Female , Graft vs Host Disease/immunology , Male , Mice , Mice, Inbred C57BL , Whole-Body Irradiation , X-Rays
16.
Scand J Immunol ; 92(4): e12942, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32697349

ABSTRACT

It is a central tenet of the clonal selection theory, that lymphocyte repertoires are tolerized to self-antigens during their ontogeny. Germinal centres are the sites in secondary lymphoid tissues where B cells undergo affinity maturation and class-switching to produce high-affinity antibodies. This process is crucial, both in our ability to mount protective humoral responses to infections and to vaccinations, but it is also involved in untoward reactions to self-antigens, which underlie autoimmunity. The process of affinity maturation poses a significant challenge to tolerance, as the random nature of somatic hypermutation can introduce novel reactivities. Therefore, it has been a long-standing idea that mechanisms must exist which limit the emergence of autoreactivity at the germinal centre level. One of these mechanisms is the requirement for linked recognition, which imposes on B cells a dependence on centrally tolerant T follicular helper cells. However, as linked recognition can be bypassed by adduct formation of autoantigenic complexes, it has been an appealing notion that there should be an additional layer of dominant mechanisms regulating emergence of autoreactive specificities. About a decade ago, this notion was addressed by the discovery of a novel subset of T regulatory cells localizing to the germinal centre and regulating germinal centre B-cell responses. Here, we detail the progress that has been made towards characterizing this T follicular regulatory cell subset and understanding the functions of these 'guardians of the germinal centre'.


Subject(s)
Germinal Center/immunology , Self Tolerance/immunology , T-Lymphocytes, Regulatory/immunology , Animals , B-Lymphocytes/immunology , Humans
17.
Cytometry A ; 97(8): 811-823, 2020 08.
Article in English | MEDLINE | ID: mdl-32459058

ABSTRACT

Stochastic multicolor transgenic labeling systems, such as the Brainbow reporters, have emerged as powerful tools in lineage tracing experiments. Originally designed for large-scale mapping of neuronal projections in densely populated tissues, they have been repurposed for diverse uses. The Brainbow 2.1-derived Confetti reporter was used, for example, to define stem cell clonality and dynamics in crypts of the intestinal mucosa, T-cell clonality, microglial heterogeneity, and B-cell clonal evolution in germinal centers. Traditionally, read-outs have relied on imaging in situ, providing information about cellular localization within tissue stroma. However, recent applications of the technique have moved into hematopoietically derived motile cell types, for example, T and B lymphocytes and their progeny, creating an unmet need to survey larger populations of cells ex vivo to determine labeling densities or skews in color representation over time to read-out clonal expansion and selection effects. Originally designed for imaging methods, these reporters encode information in the spectral properties of fluorophores and their subcellular localization, making them poorly suited to traditional flow cytometry analyses. The advent of high-content imaging and imaging flow cytometry have recently closed the gap between flow cytometry and imaging. We analyzed a 10-color biallelic Confetti reporter using flow and imaging flow cytometry. Beyond its use as a high-throughput method for measuring reporter labeling densities and color distributions over time, it also opens the door to new avenues of research relying on similar read-outs, for example, tumor heterogeneity and clonal dynamics. © 2020 International Society for Advancement of Cytometry.


Subject(s)
Germinal Center , Stem Cells , B-Lymphocytes , Color , Flow Cytometry , Humans
18.
Cell Rep ; 29(9): 2745-2755.e4, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31775042

ABSTRACT

Follicular dendritic cells (FDCs), a rare and enigmatic stromal cell type in the B cell follicles of secondary lymphoid organs, store and present antigen to B cells. While essential for germinal center (GC) responses, their exact role during GC B cell selection remains unknown. FDCs upregulate the inhibitory IgG Fc receptor FcγRIIB during GC formation. We show that the stromal deficiency of FcγRIIB does not affect GC B cell frequencies compared to wild-type mice. However, in the absence of FcγRIIB on FDCs, GCs show aberrant B cell selection during autoreactive and selective foreign antigen responses. These GCs are more diverse as measured by the AidCreERT2 -confetti system and show the persistence of IgM+ clones with decreased numbers of IgH mutations. Our results show that FDCs can modulate GC B cell diversity by the upregulation of FcγRIIB. Permissive clonal selection and subsequent increased GC diversity may affect epitope spreading during autoimmunity and foreign responses.


Subject(s)
Dendritic Cells, Follicular/immunology , Germinal Center/immunology , Receptors, IgG/genetics , Animals , Cell Differentiation , Humans , Mice
19.
J Vis Exp ; (146)2019 04 11.
Article in English | MEDLINE | ID: mdl-31033960

ABSTRACT

Autoimmune diseases present a significant health burden. Fundamental questions regarding the development and progression of autoimmune disease remain unanswered. One requirement for advancements in our understanding of the underlying disease mechanisms and cellular dynamics is the precise coupling of the microanatomical location of cell subsets with downstream molecular or functional analyses; a goal that has traditionally been difficult to achieve. The development of stable photoactivatable biological fluorophores and their integration into reporter strains has recently enabled precise microanatomical labeling and tracking of cellular subsets in murine models. Here, we describe how the ability to analyze autoreactive lymphocytes from single germinal centers may help to provide novel insights into autoimmunity, using the combination of a novel chimeric model of autoimmunity with a photoactivatable reporter as an example. We demonstrate a procedure for generating mixed chimeras with spontaneous autoreactive germinal centers populated by lymphocytes carrying a photoactivatable green fluorescent protein reporter. Using in vivo labeling strategies, single germinal centers can be visualized in explanted lymphoid tissues and their cellular constituents photoactivated by two-photon microscopy. Photoactivated lymphocytes from single germinal centers can then be analyzed or sorted flow cytometrically, as single cells or in bulk, and may be subjected to additional downstream molecular and functional analyses. This approach may directly be applied to provide renewed insights in the field of autoimmunity, but the procedure for generating bone marrow chimeras and the photoactivation procedure may additionally find broad application in studies of infectious diseases and tumor metastases.


Subject(s)
Autoimmunity/radiation effects , Germinal Center/immunology , Germinal Center/radiation effects , Light , Models, Immunological , Animals , Autoimmune Diseases/immunology , Flow Cytometry , Humans , Lymph Nodes/immunology , Mice
20.
Elife ; 72018 08 01.
Article in English | MEDLINE | ID: mdl-30066671

ABSTRACT

Understanding cellular processes occurring in vivo on time scales of days to weeks requires repeatedly interrogating the same tissue without perturbing homeostasis. We describe a novel setup for longitudinal intravital imaging of murine peripheral lymph nodes (LNs). The formation and evolution of single germinal centers (GCs) was visualized over days to weeks. Naïve B cells encounter antigen and form primary foci, which subsequently seed GCs. These experience widely varying rates of homogenizing selection, even within closely confined spatial proximity. The fluidity of GCs is greater than previously observed with large shifts in clonality over short time scales; and loss of GCs is a rare, observable event. The observation of contemporaneous, congruent shifts in clonal composition between GCs within the same animal suggests inter-GC trafficking of memory B cells. This tool refines approaches to resolving immune dynamics in peripheral LNs with high temporospatial resolution and minimal perturbation of homeostasis.


Subject(s)
B-Lymphocytes/immunology , Clonal Evolution , Clonal Selection, Antigen-Mediated/immunology , Germinal Center/cytology , Lymph Nodes/cytology , Animals , B-Lymphocytes/cytology , B-Lymphocytes/physiology , Cell Movement , Cells, Cultured , Germinal Center/immunology , Germinal Center/physiology , Lymph Nodes/immunology , Lymph Nodes/physiology , Mice , Mice, Inbred C57BL , Time-Lapse Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...