Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Appl Microbiol Biotechnol ; 107(2-3): 691-717, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36595038

ABSTRACT

Plant biomass is a promising substrate for biorefinery, as well as a source of bioactive compounds, platform chemicals, and precursors with multiple industrial applications. These applications depend on the hydrolysis of its recalcitrant structure. However, the effective biological degradation of plant cell walls requires several enzymatic groups acting synergistically, and novel enzymes are needed in order to achieve profitable industrial hydrolysis processes. In the present work, a feruloyl esterase (FAE) activity screening of Penicillium spp. strains revealed a promising candidate (Penicillium rubens Wisconsin 54-1255; previously Penicillium chrysogenum), where two FAE-ORFs were identified and subsequently overexpressed. Enzyme extracts were analyzed, confirming the presence of FAE activity in the respective gene products (PrFaeA and PrFaeB). PrFaeB-enriched enzyme extracts were used to determine the FAE activity optima (pH 5.0 and 50-55 °C) and perform proteome analysis by means of MALDI-TOF/TOF mass spectrometry. The studies were completed with the determination of other lignocellulolytic activities, an untargeted metabolite analysis, and upscaled FAE production in stirred tank reactors. The findings described in this work present P. rubens as a promising lignocellulolytic enzyme producer. KEY POINTS: • Two Penicillium rubens ORFs were first confirmed to have feruloyl esterase activity. • Overexpression of the ORFs produced a novel P. rubens strain with improved activity. • The first in-depth proteomic study of a P. rubens lignocellulolytic extract is shown.


Subject(s)
Penicillium chrysogenum , Penicillium , Penicillium chrysogenum/metabolism , Proteomics/methods , Penicillium/metabolism , Plant Extracts/metabolism , Fungal Proteins/metabolism
2.
Microorganisms ; 10(6)2022 Jun 18.
Article in English | MEDLINE | ID: mdl-35744767

ABSTRACT

Rotting wood is inhabited by a large diversity of bacteria, fungi, and insects with complex environmental relationships. The aim of this work was to study the composition of the microbiota (bacteria and fungi) in decaying wood from a northwest Spanish forest as a source of industrially relevant microorganisms. The analyzed forest is situated in a well-defined biogeographic area combining Mediterranean and temperate macrobioclimates. Bacterial diversity, determined by metagenome analyses, was higher than fungal heterogeneity. However, a total of 194 different cultivable bacterial isolates (mainly Bacillaceae, Streptomycetaceae, Paenibacillaceae, and Microbacteriaceae) were obtained, in contrast to 343 fungal strains (mainly Aspergillaceae, Hypocreaceae, and Coniochaetaceae). Isolates traditionally known as secondary metabolite producers, such as Actinobacteria and members of the Penicillium genus, were screened for their antimicrobial activity by the detection of antibiotic biosynthetic clusters and competitive bioassays against fungi involved in wood decay. In addition, the ability of Penicillium isolates to degrade cellulose and release ferulic acid from wood was also examined. These results present decaying wood as an ecologically rich niche and a promising source of biotechnologically interesting microorganisms.

3.
Front Microbiol ; 12: 714233, 2021.
Article in English | MEDLINE | ID: mdl-34421874

ABSTRACT

Marine environments are home to an extensive number of microorganisms, many of which remain unexplored for taxonomic novelty and functional capabilities. In this study, a slow-growing Streptomyces strain expressing unique genomic and phenotypic characteristics, P38-E01 T , was described using a polyphasic taxonomic approach. This strain is part of a collection of over 8,000 marine Actinobacteria isolates collected in the Trondheim fjord of Norway by SINTEF Industry (Trondheim, Norway) and the Norwegian University of Science and Technology (NTNU, Trondheim, Norway). Strain P38-E01 T was isolated from the sediments of the Trondheim fjord, and phylogenetic analyses affiliated this strain with the genus Streptomyces, but it was not closely affiliated with other described species. The closest related type strains were Streptomyces daliensis YIM 31724 T (98.6%), Streptomyces rimosus subsp. rimosus ATCC 10970 T (98.4%), and Streptomyces sclerotialus NRRL ISP-5269 T (98.3%). Predominant fatty acids were C16:0 iso, C16:0, and Summed Feature 3, and the predominant respiratory quinones were MK-10(H6), MK-10(H4), and MK9(H4). The main polar lipids were identified as diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, and phosphoglycolipid. The whole-cell sugars were glucose, ribose, and in minor amounts, mannose. The cell wall peptidoglycan contained LL-diaminopimelic acid. The draft genome has a size of 6.16 Mb, with a %G + C content of 71.4% and is predicted to contain at least 19 biosynthetic gene clusters encoding diverse secondary metabolites. Strain P38-E01 T was found to inhibit the growth of the pathogenic yeast Candida albicans ATCC 90028 and a number of Gram-positive bacterial human and plant pathogens. Metabolites extracted from cultures of P38-E01 T were analyzed by mass spectrometry, and it was found that the isolate produced the antifungal compound candicidin. Phenotypic and chemotaxonomic signatures, along with phylogenetic analyses, distinguished isolate P38-E01 T from its closest neighbors; thus, this isolate represents a novel species of the genus Streptomyces for which the name Streptomyces tardus sp. nov. (P38-E01 T = CCM 9049 T = DSM 111582 T ) is proposed.

4.
Biotechnol Biofuels ; 14(1): 34, 2021 Jan 30.
Article in English | MEDLINE | ID: mdl-33516261

ABSTRACT

BACKGROUND: Butanol (n-butanol) has been gaining attention as a renewable energy carrier and an alternative biofuel with superior properties to the most widely used ethanol. We performed 48 anaerobic fermentations simultaneously with glucose and xylose as representative lignocellulosic sugars by Clostridium beijerinckii NCIMB 8052 in BioLector® microbioreactors to understand the effect of different sugar mixtures on fermentation and to demonstrate the applicability of the micro-cultivation system for high-throughput anaerobic cultivation studies. We then compared the results to those of similar cultures in serum flasks to provide insight into different setups and measurement methods. RESULTS: ANOVA results showed that the glucose-to-xylose ratio affects both growth and production due to Carbon Catabolite Repression. The study demonstrated successful use of BioLector® system for the first time for screening several media and sugar compositions under anaerobic conditions by using online monitoring of cell mass and pH in real-time and at unprecedented time-resolution. Fermentation products possibly interfered with dissolved oxygen (DO) measurements, which require a careful interpretation of DO monitoring results. CONCLUSIONS: The statistical approach to evaluate the microbioreactor setup, and information obtained in this study will support further research in bioreactor and bioprocess design, which are very important aspects of industrial fermentations of lignocellulosic biomass.

5.
Molecules ; 21(9)2016 Aug 27.
Article in English | MEDLINE | ID: mdl-27618884

ABSTRACT

Activation of silent biosynthetic gene clusters in Streptomyces bacteria via overexpression of cluster-specific regulatory genes is a promising strategy for the discovery of novel bioactive secondary metabolites. This approach was used in an attempt to activate a cryptic gene cluster in a marine sponge-derived Streptomyces albus PVA94-07 presumably governing the biosynthesis of peptide-based secondary metabolites. While no new peptide-based metabolites were detected in the recombinant strain, it was shown to produce at least four new analogues of deferoxamine with additional acyl and sugar moieties, for which chemical structures were fully elucidated. Biological activity tests of two of the new deferoxamine analogues revealed weak activity against Escherichia coli. The gene knockout experiment in the gene cluster targeted for activation, as well as overexpression of certain genes from this cluster did not have an effect on the production of these compounds by the strain overexpressing the regulator. It seems plausible that the production of such compounds is a response to stress imposed by the production of an as-yet unidentified metabolite specified by the cryptic cluster.


Subject(s)
Anti-Bacterial Agents , Aquatic Organisms/microbiology , Deferoxamine , Escherichia coli/growth & development , Gene Expression Regulation, Bacterial/physiology , Porifera/microbiology , Streptomyces/metabolism , Animals , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/pharmacology , Deferoxamine/analogs & derivatives , Deferoxamine/metabolism , Deferoxamine/pharmacology
6.
Appl Microbiol Biotechnol ; 98(2): 603-10, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24158735

ABSTRACT

Phenazine natural products/compounds possess a range of biological activities, including anti-microbial and cytotoxic, making them valuable starting materials for drug development in several therapeutic areas. These compounds are biosynthesized almost exclusively by eubacteria of both terrestrial and marine origins from erythrose 4-phosphate and phosphoenol pyruvate via the shikimate pathway. In this paper, we report isolation of actinomycete bacteria from marine sediment collected in the Trondheimfjord, Norway. Screening of the isolates for biological activity produced several "hits", one of which was followed up by identification and purification of the active compound from the actinomycete bacterium Streptosporangium sp. The purified compound, identified as 1,6-dihydroxyphenazine-5,10-dioxide (iodinin), was subjected to extended tests for biological activity against bacteria, fungi and mammalian cells. In these tests, the iodinin demonstrated high anti-microbial and cytotoxic activity, and was particularly potent against leukaemia cell lines. This is the first report on the isolation of iodinin from a marine-derived Streptosporangium.


Subject(s)
Actinomycetales/isolation & purification , Actinomycetales/metabolism , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/metabolism , Geologic Sediments/microbiology , Actinomycetales/classification , Actinomycetales/genetics , Bacteria/drug effects , Cell Line, Tumor , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Estuaries , Fungi/drug effects , Humans , Molecular Sequence Data , Norway , Phenazines/isolation & purification , Phenazines/metabolism , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
7.
Mar Drugs ; 11(2): 332-49, 2013 Jan 30.
Article in English | MEDLINE | ID: mdl-23364682

ABSTRACT

Despite recent improvement in therapy, acute myeloid leukemia (AML) is still associated with high lethality. In the presented study, we analyzed the bioactive compound iodinin (1,6-dihydroxyphenazine 5,10-dioxide) from a marine actinomycetes bacterium for the ability to induce cell death in a range of cell types. Iodinin showed selective toxicity to AML and acute promyelocytic (APL) leukemia cells, with EC50 values for cell death up to 40 times lower for leukemia cells when compared with normal cells. Iodinin also successfully induced cell death in patient-derived leukemia cells or cell lines with features associated with poor prognostic such as FLT3 internal tandem duplications or mutated/deficient p53. The cell death had typical apoptotic morphology, and activation of apoptotic signaling proteins like caspase-3. Molecular modeling suggested that iodinin could intercalate between bases in the DNA in a way similar to the anti-cancer drug daunorubicin (DNR), causing DNA-strand breaks. Iodinin induced apoptosis in several therapy-resistant AML-patient blasts, but to a low degree in peripheral blood leukocytes, and in contrast to DNR, not in rat cardiomyoblasts. The low activity towards normal cell types that are usually affected by anti-leukemia therapy suggests that iodinin and related compounds represent promising structures in the development of anti-cancer therapy.


Subject(s)
Actinobacteria/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Leukemia, Myeloid , Actinobacteria/chemistry , Adolescent , Adult , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Cell Line, Tumor , Daunorubicin/chemistry , Female , Gene Expression Regulation, Bacterial/physiology , Humans , Male , Middle Aged , Models, Molecular , Molecular Structure , Phenazines/chemistry , Phenazines/metabolism , Phenazines/pharmacology , Rats , Young Adult
8.
Appl Environ Microbiol ; 77(18): 6636-43, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21764946

ABSTRACT

Polyene macrolide antibiotics, including nystatin and amphotericin B, possess fungicidal activity and are being used as antifungal agents to treat both superficial and invasive fungal infections. Due to their toxicity, however, their clinical applications are relatively limited, and new-generation polyene macrolides with an improved therapeutic index are highly desirable. We subjected the polyol region of the heptaene nystatin analogue S44HP to biosynthetic engineering designed to remove and introduce hydroxyl groups in the C-9-C-10 region. This modification strategy involved inactivation of the P450 monooxygenase NysL and the dehydratase domain in module 15 (DH15) of the nystatin polyketide synthase. Subsequently, these modifications were combined with replacement of the exocyclic C-16 carboxyl with the methyl group through inactivation of the P450 monooxygenase NysN. Four new polyene macrolides with up to three chemical modifications were generated, produced at relatively high yields (up to 0.51 g/liter), purified, structurally characterized, and subjected to in vitro assays for antifungal and hemolytic activities. Introduction of a C-9 hydroxyl by DH15 inactivation also blocked NysL-catalyzed C-10 hydroxylation, and these modifications caused a drastic decrease in both antifungal and hemolytic activities of the resulting analogues. In contrast, single removal of the C-10 hydroxyl group by NysL inactivation had only a marginal effect on these activities. Results from the extended antifungal assays strongly suggested that the 9-hydroxy-10-deoxy S44HP analogues became fungistatic rather than fungicidal antibiotics.


Subject(s)
Antifungal Agents/metabolism , Biosynthetic Pathways/genetics , Macrolides/metabolism , Nystatin/analogs & derivatives , Polyenes/metabolism , Streptomyces/genetics , Streptomyces/metabolism , Animals , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/toxicity , Candida albicans/drug effects , Erythrocytes/drug effects , Hemolysis , Horses , Macrolides/chemistry , Macrolides/pharmacology , Macrolides/toxicity , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Nystatin/chemistry , Nystatin/metabolism , Nystatin/pharmacology , Nystatin/toxicity , Polyenes/chemistry , Polyenes/pharmacology , Polyenes/toxicity , Polymers/chemistry , Polymers/metabolism , Streptomyces/enzymology
9.
Appl Environ Microbiol ; 76(21): 7093-101, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20851988

ABSTRACT

Recently, we isolated a new thiopeptide antibiotic, TP-1161, from the fermentation broth of a marine actinomycete typed as a member of the genus Nocardiopsis. Here we report the identification, isolation, and analysis of the TP-1161 biosynthetic gene cluster from this species. The gene cluster was identified by mining a draft genome sequence using the predicted structural peptide sequence of TP-1161. Functional assignment of a ∼16-kb genomic region revealed 13 open reading frames proposed to constitute the TP-1161 biosynthetic locus. While the typical core set of thiopeptide modification enzymes contains one cyclodehydratase/dehydrogenase pair, paralogous genes predicted to encode additional cyclodehydratases and dehydrogenases were identified. Although attempts at heterologous expression of the TP-1161 gene cluster in Streptomyces coelicolor failed, its identity was confirmed through the targeted gene inactivation in the original host.


Subject(s)
Actinomycetales/genetics , Anti-Bacterial Agents/biosynthesis , Genes, Bacterial/genetics , Peptides, Cyclic/biosynthesis , Actinomycetales/metabolism , Chromosome Mapping , Cloning, Molecular , Cosmids/genetics , Gene Expression/genetics , Molecular Sequence Data , Multigene Family/genetics , Peptides/genetics , Sequence Alignment , Sequence Analysis, DNA , Thiazoles
10.
Appl Environ Microbiol ; 76(15): 4969-76, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20562278

ABSTRACT

Twenty-seven marine sediment- and sponge-derived actinomycetes with a preference for or dependence on seawater for growth were classified at the genus level using molecular taxonomy. Their potential to produce bioactive secondary metabolites was analyzed by PCR screening for genes involved in polyketide and nonribosomal peptide antibiotic synthesis. Using microwell cultures, conditions for the production of antibacterial and antifungal compounds were identified for 15 of the 27 isolates subjected to this screening. Nine of the 15 active extracts were also active against multiresistant gram-positive bacterial and/or fungal indicator organisms, including vancomycin-resistant Enterococcus faecium and multidrug-resistant Candida albicans. Activity-guided fractionation of fermentation extracts of isolate TFS65-07, showing strong antibacterial activity and classified as a Nocardiopsis species, allowed the identification and purification of the active compound. Structure elucidation revealed this compound to be a new thiopeptide antibiotic with a rare aminoacetone moiety. The in vitro antibacterial activity of this thiopeptide, designated TP-1161, against a panel of bacterial strains was determined.


Subject(s)
Actinomycetales/isolation & purification , Actinomycetales/metabolism , Anti-Bacterial Agents/pharmacology , Geologic Sediments/microbiology , Peptides/pharmacology , Porifera/microbiology , Actinomycetales/classification , Actinomycetales/genetics , Animals , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/isolation & purification , Antifungal Agents/isolation & purification , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Bacteria/drug effects , Candida albicans/drug effects , Genes, Fungal , Microbial Sensitivity Tests , Molecular Sequence Data , Peptides/isolation & purification , Sequence Analysis, DNA
11.
Appl Microbiol Biotechnol ; 87(3): 951-64, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20372887

ABSTRACT

We here present the pyc gene encoding pyruvate carboxylase (PC), and the hom-1 and hom-2 genes encoding two active homoserine dehydrogenase (HD) proteins, in methylotrophic Bacillus methanolicus MGA3. In general, both PC and HD are regarded as key targets for improving bacterial L-lysine production; PC plays a role in precursor oxaloacetate (OAA) supply while HD controls an important branch point in the L-lysine biosynthetic pathway. The hom-1 and hom-2 genes were strongly repressed by L-threonine and L-methionine, respectively. Wild-type MGA3 cells secreted 0.4 g/l L-lysine and 59 g/l L-glutamate under optimised fed batch methanol fermentation. The hom-1 mutant M168-20 constructed herein secreted 11 g/l L-lysine and 69 g/l of L-glutamate, while a sixfold higher L-lysine overproduction (65 g/l) of the previously constructed classical B. methanolicus mutant NOA2#13A52-8A66 was accompanied with reduced L-glutamate production (28 g/l) and threefold elevated pyc transcription level. Overproduction of PC and its mutant enzyme P455S in M168-20 had no positive effect on the volumetric L-lysine yield and the L-lysine yield on methanol, and caused significantly reduced volumetric L-glutamate yield and L: -glutamate yield on methanol. Our results demonstrated that hom-1 represents one key target for achieving L-lysine overproduction, PC activity plays an important role in controlling L-glutamate production from methanol, and that OAA precursor supply is not a major bottleneck for L-lysine overproduction by B. methanolicus.


Subject(s)
Bacillus/enzymology , Bacterial Proteins/metabolism , Homoserine Dehydrogenase/metabolism , Lysine/biosynthesis , Methanol/metabolism , Pyruvate Carboxylase/metabolism , Bacillus/genetics , Bacillus/metabolism , Bacterial Proteins/genetics , Cloning, Molecular , Fermentation , Glutamic Acid/metabolism , Homoserine Dehydrogenase/genetics , Hot Temperature , Methionine/metabolism , Molecular Sequence Data , Mutation , Pyruvate Carboxylase/genetics , Threonine/metabolism
12.
Appl Environ Microbiol ; 76(1): 283-93, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19854930

ABSTRACT

A new compound, designated ML-449, structurally similar to the known 20-membered macrolactam BE-14106, was isolated from a marine sediment-derived Streptomyces sp. Cloning and sequencing of the 83-kb ML-449 biosynthetic gene cluster revealed its high level of similarity to the BE-14106 gene cluster. Comparison of the respective biosynthetic pathways indicated that the difference in the compounds' structures stems from the incorporation of one extra acetate unit during the synthesis of the acyl side chain. A phylogenetic analysis of the beta-ketosynthase (KS) domains from polyketide synthases involved in the biosynthesis of macrolactams pointed to a common ancestry for the two clusters. Furthermore, the analysis demonstrated the formation of a macrolactam-specific subclade for the majority of the KS domains from several macrolactam-biosynthetic gene clusters, indicating a closer relationship between macrolactam clusters than with the macrolactone clusters included in the analysis. Some KS domains from the ML-449, BE-14106, and salinilactam gene clusters did, however, show a closer relationship with KS domains from the polyene macrolide clusters, suggesting potential acquisition rather than duplication of certain PKS genes. Comparison of the ML-449, BE-14106, vicenistatin, and salinilactam biosynthetic gene clusters indicated an evolutionary relationship between them and provided new insights into the processes governing the evolution of small-ring macrolactam biosynthesis.


Subject(s)
Biosynthetic Pathways/genetics , Evolution, Molecular , Lactams, Macrocyclic/metabolism , Multigene Family , Streptomyces/genetics , Streptomyces/metabolism , Bacterial Proteins/genetics , Cloning, Molecular , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Gene Order , Geologic Sediments/microbiology , Molecular Sequence Data , Molecular Structure , Phylogeny , Polyketide Synthases/genetics , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Streptomyces/isolation & purification
13.
Chem Biol ; 16(10): 1109-21, 2009 Oct 30.
Article in English | MEDLINE | ID: mdl-19875084

ABSTRACT

BE-14106 is a macrocyclic lactam with an acyl side chain previously identified in a marine-derived Streptomyces sp. The gene cluster for BE-14106 biosynthesis was cloned from a Streptomyces strain newly isolated from marine sediments collected in the Trondheimsfjord (Norway). Bioinformatics and experimental analyses of the genes in the cluster suggested an unusual mechanism for assembly of the molecule. Biosynthesis of the aminoacyl starter apparently involves the concerted action of a distinct polyketide synthase (PKS) system and several enzymes that activate and process an amino acid. The resulting starter unit is loaded onto a second PKS complex, which completes the synthesis of the macrolactam ring. Gene inactivation experiments, enzyme assays with heterologously expressed proteins, and feeding studies supported the proposed model for the biosynthesis and provided new insights into the assembly of macrolactams with acyl side chain.


Subject(s)
Amino Acids/metabolism , Lactams/chemistry , Polyketide Synthases/metabolism , Amino Acids/chemistry , Humans , Jurkat Cells , Lactams/metabolism , Molecular Sequence Data , Multigene Family , Polyketide Synthases/genetics , Streptomyces/enzymology , Streptomyces/genetics
14.
Appl Environ Microbiol ; 75(3): 652-61, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19060158

ABSTRACT

Aspartokinase (AK) controls the carbon flow into the aspartate pathway for the biosynthesis of the amino acids l-methionine, l-threonine, l-isoleucine, and l-lysine. We report here the cloning of four genes (asd, encoding aspartate semialdehyde dehydrogenase; dapA, encoding dihydrodipicolinate synthase; dapG, encoding AKI; and yclM, encoding AKIII) of the aspartate pathway in Bacillus methanolicus MGA3. Together with the known AKII gene lysC, dapG and yclM form a set of three AK genes in this organism. Overexpression of dapG, lysC, and yclM increased l-lysine production in wild-type B. methanolicus strain MGA3 2-, 10-, and 60-fold (corresponding to 11 g/liter), respectively, without negatively affecting the specific growth rate. The production levels of l-methionine (less than 0.5 g/liter) and l-threonine (less than 0.1 g/liter) were low in all recombinant strains. The AK proteins were purified, and biochemical analyses demonstrated that they have similar V(max) values (between 47 and 58 micromol/min/mg protein) and K(m) values for l-aspartate (between 1.9 and 5.0 mM). AKI and AKII were allosterically inhibited by meso-diaminopimelate (50% inhibitory concentration [IC(50)], 0.1 mM) and by l-lysine (IC(50), 0.3 mM), respectively. AKIII was inhibited by l-threonine (IC(50), 4 mM) and by l-lysine (IC(50), 5 mM), and this enzyme was synergistically inhibited in the presence of both of these amino acids at low concentrations. The correlation between the impact on l-lysine production in vivo and the biochemical properties in vitro of the individual AK proteins is discussed. This is the first example of improving l-lysine production by metabolic engineering of B. methanolicus and also the first documentation of considerably increasing l-lysine production by overexpression of a wild-type AK.


Subject(s)
Aspartate Kinase/genetics , Aspartate Kinase/metabolism , Bacillus/enzymology , Bacillus/metabolism , Gene Dosage , Gene Expression , Lysine/biosynthesis , Animals , Aspartate Kinase/isolation & purification , Aspartate-Semialdehyde Dehydrogenase/genetics , Aspartate-Semialdehyde Dehydrogenase/metabolism , Aspartic Acid/metabolism , Bacillus/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Diaminopimelic Acid/pharmacology , Enzyme Inhibitors/pharmacology , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Inhibitory Concentration 50 , Kinetics , Methionine/biosynthesis , Molecular Sequence Data , Sequence Analysis, DNA , Threonine/pharmacology
15.
Chem Biol ; 15(11): 1198-206, 2008 Nov 24.
Article in English | MEDLINE | ID: mdl-19022180

ABSTRACT

Seven polyene macrolides with alterations in the polyol region and exocyclic carboxy group were obtained via genetic engineering of the nystatin biosynthesis genes in Streptomyces noursei. In vitro analyses of the compounds for antifungal and hemolytic activities indicated that combinations of several mutations caused additive improvements in their activity-toxicity properties. The two best analogs selected on the basis of in vitro data were tested for acute toxicity and antifungal activity in a mouse model. Both analogs were shown to be effective against disseminated candidosis, while being considerably less toxic than amphotericin B. To our knowledge, this is the first report on polyene macrolides with improved in vivo pharmacological properties obtained by genetic engineering. These results indicate that the engineered nystatin analogs can be further developed into antifungal drugs for human use.


Subject(s)
Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Genetic Engineering/methods , Nystatin/biosynthesis , Nystatin/pharmacology , Polyenes/chemistry , Streptomyces/genetics , Animals , Antifungal Agents/chemistry , Antifungal Agents/toxicity , Base Sequence , Candida albicans/drug effects , Genes, Bacterial/genetics , Hemolysis/drug effects , Humans , Male , Mice , Nystatin/analogs & derivatives , Nystatin/chemistry , Nystatin/toxicity , Polymers/chemistry , Streptomyces/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...