Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 204: 171-176, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26773951

ABSTRACT

A sulfur-redox-reaction-activated up-flow anaerobic sludge blanket (UASB) and down-flow hanging sponge (DHS) system, combined with an anaerobic/anoxic sequencing batch reactor (A2SBR), has been used for municipal sewage treatment for over 2 years. The present system achieved a removal rate of 95±14% for BOD, 74±22% for total nitrogen, and 78±25% for total phosphorus, including low water temperature conditions. Sludge conversion rates during the operational period were 0.016 and 0.218 g-VSS g-COD-removed(-1) for the UASB, and DHS, respectively, which are similar to a conventional UASB-DHS system, which is not used of sulfur-redox-reaction, for sewage treatment. Using the sulfur-redox reaction made advanced treatment of municipal wastewater with minimal sludge generation possible, even in winter. Furthermore, the occurrence of a unique phenomenon, known as the anaerobic sulfur oxidation reaction, was confirmed in the UASB reactor under the winter season.


Subject(s)
Sewage/chemistry , Sulfur/metabolism , Anaerobiosis , Biological Oxygen Demand Analysis , Bioreactors , Nitrogen/analysis , Oxidation-Reduction , Phosphorus , Waste Management/instrumentation , Waste Management/methods , Wastewater/chemistry
2.
Water Sci Technol ; 71(3): 454-61, 2015.
Article in English | MEDLINE | ID: mdl-25714647

ABSTRACT

The anaerobic-anoxic sequence batch reactor (A2SBR) was applied to achieve nitrogen and phosphorus removal in an energy-saving sewage treatment system involving an up-flow anaerobic sludge blanket combined with a down-flow hanging sponge reactor to treat municipal sewage. After sludge acclimation, the A2SBR showed satisfactory denitrification and phosphorus removal performance with total phosphate and nitrate concentrations of the effluent of 8.4 ± 3.4 mg-N L⁻¹ and 0.9 ± 0.6 mg-P L⁻¹, respectively. 16S rRNA gene sequence and fluorescence in situ hybridization analyses revealed that 'Candidatus Accumulibacter phosphatis' was the dominant phosphate-accumulating micro-organism. Although a competitive bacterium for polyphosphate-accumulating organisms, 'Ca. Competibacter phosphatis', was not detected, Dechloromonas spp. were abundant. The ppk1 gene sequence analysis showed that the type II lineage of 'Ca. Accumulibacter' was dominant. The results suggest that denitrification and phosphorus removal in the A2SBR could be achieved by cooperative activity of 'Ca. Accumulibacter' and nitrate-reducing bacteria.


Subject(s)
Bacteria/classification , Bioreactors/microbiology , Nitrogen/metabolism , Phosphorus/metabolism , Anaerobiosis , Bacteria/genetics , Denitrification , In Situ Hybridization, Fluorescence , Nitrates , Nitrogen/chemistry , Phosphorus/chemistry , RNA, Ribosomal, 16S/genetics , Sewage/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...