Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Neuroeng Rehabil ; 19(1): 133, 2022 12 03.
Article in English | MEDLINE | ID: mdl-36463219

ABSTRACT

BACKGROUND: To plan treatment and measure post-stroke recovery, frequent and time-bounded functional assessments are recommended. With increasing needs for neurorehabilitation advances, new technology based methods, such as virtual reality (VR) have emerged. Here, we developed an immersive VR version of the Action Research Arm Test (ARAT-VR) to complement neurorehabilitation. OBJECTIVE: This study aimed to assess the validity, usability and test-retest reliability of the ARAT-VR among individuals with stroke, healthcare professionals and healthy control subjects (HCS). METHODS: Among the 19 items of the ARAT, 13 items were selected and developed in immersive VR. 11 healthcare professionals, 30 individuals with stroke, and 25 HCS were recruited. Content validity was assessed by asking healthcare professionals to rate the difficulty of performing each item of the ARAT-VR in comparison to the classical Action Research Arm Test (ARAT-19). Concurrent validity was first measured using correlation (Spearman tests) between the ARAT-VR and ARAT-19 scores for the individuals with stroke, and second through correlation and comparison between the scores of the ARAT-VR and the reduced version of the ARAT (ARAT-13) for both individuals with stroke and HCS (Wilcoxon signed rank tests and Bland-Altman plots). Usability was measured using the System Usability Scale. A part of individuals with stroke and HCS were re-tested following a convenient delay to measure test-retest reliability (Intra-class correlation and Wilcoxon tests). RESULTS: Regarding the content validity, median difficulty of the 13 ARAT-VR items (0[0 to - 1] to 0[0-1]) evaluated by healthcare professionals was rated as equivalent to the classical ARAT for all tasks except those involving the marbles. For these, the difficulty was rated as superior to the real tasks (1[0-1] when pinching with the thumb-index and thumb-middle fingers, and 1[0-2] when pinching with thumb-ring finger). Regarding the concurrent validity, for paretic hand scores, there were strong correlations between the ARAT-VR and ARAT-13 (r = 0.84), and between the ARAT-VR and ARAT-19 (r = 0.83). Usability (SUS = 82.5[75-90]) and test-retest reliability (ICC = 0.99; p < 0.001) were excellent. CONCLUSION: The ARAT-VR is a valid, usable and reliable tool that can be used to assess upper limb activity among individuals with stroke, providing potential to increase assessment frequency, remote evaluation, and improve neurorehabilitation. Trial registration https://clinicaltrials.gov/ct2/show/NCT04694833 ; Unique identifier: NCT04694833, Date of registration: 11/24/2020.


Subject(s)
Stroke , Virtual Reality , Humans , Health Services Research , Reproducibility of Results , Stroke/complications , Upper Extremity
2.
Eur J Phys Rehabil Med ; 58(4): 530-548, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35666491

ABSTRACT

INTRODUCTION: The primary aim of this work was to summarize and compare the effects of active rehabilitation assisted by new technologies (virtual reality [VR], robot-assisted therapy [RAT] and telerehabilitation [TR)) on upper limb motor function and everyday living activity during the subacute and chronic phases of stroke. The secondary aims were to compare the effects of these technologies according to the intervention design (in addition to or in substitution of conventional therapy), the duration of active rehabilitation and the severity of patients' motor impairments. EVIDENCE ACQUISITION: Several databases, namely PubMed, Scopus, Embase and Cochrane Library, were searched. Studies were included if they were meta-analyses with a moderate to high level of confidence (assessed with AMSTAR-2) that compared the effects of a new technology promoting active rehabilitation to that of a conventional therapy program among patients with stroke. Network meta-analyses were conducted to compare the effects of the new technologies. EVIDENCE SYNTHESIS: Eighteen different meta-analyses were selected and fifteen included in the quantitative analysis. In total these 15 meta-analyses were based on 189 different randomized controlled trials. VR (SMD≥0.25; P<0.05), RAT (SMD≥0.29; P≤0.29) and TR (SMD≥-0.08; P≤0.64) were found to be at least as effective as conventional therapy. During the subacute phase, RAT's greatest effect was observed for patients with severe-moderate impairments whereas VR and TR's greatest effects were observed for patients with mild impairments. During the chronic phase, the highest effects were observed for patients with mild impairments, for all studies technologies. Network meta-analyses showed that VR and RAT were both significantly superior to TR in improving motor function during the chronic phase but revealed no significant difference between VR, RAT and TR effectiveness on both motor function (during the subacute phase) and activity (during both chronic and subacute phase). CONCLUSIONS: This overview provides low-to-moderate evidence that rehabilitation assisted with technologies are at least as effective as conventional therapy for patients with stroke. While VR and RAT seem to be more efficient during the subacute phase, all technologies seem to be as efficient as one another in the chronic phase.


Subject(s)
Stroke Rehabilitation , Stroke , Telerehabilitation , Humans , Network Meta-Analysis , Stroke/complications , Upper Extremity
3.
J Neuroeng Rehabil ; 19(1): 7, 2022 01 22.
Article in English | MEDLINE | ID: mdl-35065678

ABSTRACT

BACKGROUND: After a stroke, experts recommend regular monitoring and kinematic assessments of patients to objectively measure motor recovery. With the rise of new technologies and increasing needs for neurorehabilitation, an interest in virtual reality has emerged. In this context, we have developed an immersive virtual reality version of the Box and Block Test (BBT-VR). The aim of this study was to assess the concurrent validity of the BBT-VR among patients with stroke and healthy participants. METHODS: Twenty-three healthy participants and 22 patients with stroke were asked to perform the classical Box and Block Test (BBT) and BBT-VR three times with both hands. Concurrent validity was assessed through correlations between these two tests and reliability of the BBT-VR through correlation on test-retest. Usability of the BBT-VR was also evaluated with the System Usability Scale. Hand kinematic data extracted from controller's 3D position allowed to compute mean velocity (Vmean), peak velocity (Vpeak) and smoothness (SPARC). RESULTS: Results showed strong correlations between the number of blocks displaced with the BBT and the BBT-VR among patients with stroke for affected (r = 0.89; p < 0.001) and less-affected hands (r = 0.76; p < 0.001) and healthy participants for dominant (r = 0.58; p < 0.01) and non-dominant hands (r = 0.68; p < 0.001). Reliability for test-retest was excellent (ICC > 0.8; p < 0.001) and usability almost excellent (System Usability Scale = 79 ± 12.34%). On average participants moved between 30 and 40% less blocks during the BBT-VR than during the BBT. Healthy participants demonstrated significantly higher kinematic measures (Vmean = 0.22 ± 0.086 ms-1; Vpeak = 0.96 ± 0.341 ms-1; SPARC = - 3.31 ± 0.862) than patients with stroke (Vmean = 0.12 ± 0.052 ms-1; Vpeak = 0.60 ± 0.202 ms-1; SPARC = - 5.04[- 7.050 to - 3.682]). CONCLUSION: The BBT-VR is a usable, valid and reliable test to assess manual dexterity, providing kinematic parameters, in a population of patients with stroke and healthy participants. Trial registration http://www.clinicaltrials.gov ; Unique identifier: NCT04694833, Date of registration: 11/24/2020.


Subject(s)
Stroke Rehabilitation , Stroke , Virtual Reality , Humans , Reproducibility of Results , Stroke Rehabilitation/methods , Upper Extremity
4.
J Neuroeng Rehabil ; 18(1): 100, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34130713

ABSTRACT

BACKGROUND: Approximately two thirds of stroke survivors maintain upper limb (UL) impairments and few among them attain complete UL recovery 6 months after stroke. Technological progress and gamification of interventions aim for better outcomes and constitute opportunities in self- and tele-rehabilitation. OBJECTIVES: Our objective was to assess the efficacy of serious games, implemented on diverse technological systems, targeting UL recovery after stroke. In addition, we investigated whether adherence to neurorehabilitation principles influenced efficacy of games specifically designed for rehabilitation, regardless of the device used. METHOD: This systematic review was conducted according to PRISMA guidelines (PROSPERO registration number: 156589). Two independent reviewers searched PubMed, EMBASE, SCOPUS and Cochrane Central Register of Controlled Trials for eligible randomized controlled trials (PEDro score ≥ 5). Meta-analysis, using a random effects model, was performed to compare effects of interventions using serious games, to conventional treatment, for UL rehabilitation in adult stroke patients. In addition, we conducted subgroup analysis, according to adherence of included studies to a consolidated set of 11 neurorehabilitation principles. RESULTS: Meta-analysis of 42 trials, including 1760 participants, showed better improvements in favor of interventions using serious games when compared to conventional therapies, regarding UL function (SMD = 0.47; 95% CI = 0.24 to 0.70; P < 0.0001), activity (SMD = 0.25; 95% CI = 0.05 to 0.46; P = 0.02) and participation (SMD = 0.66; 95% CI = 0.29 to 1.03; P = 0.0005). Additionally, long term effect retention was observed for UL function (SMD = 0.42; 95% CI = 0.05 to 0.79; P = 0.03). Interventions using serious games that complied with at least 8 neurorehabilitation principles showed better overall effects. Although heterogeneity levels remained moderate, results were little affected by changes in methods or outliers indicating robustness. CONCLUSION: This meta-analysis showed that rehabilitation through serious games, targeting UL recovery after stroke, leads to better improvements, compared to conventional treatment, in three ICF-WHO components. Irrespective of the technological device used, higher adherence to a consolidated set of neurorehabilitation principles enhances efficacy of serious games. Future development of stroke-specific rehabilitation interventions should further take into consideration the consolidated set of neurorehabilitation principles.


Subject(s)
Stroke Rehabilitation , Stroke , Activities of Daily Living , Adult , Humans , Recovery of Function , Upper Extremity
5.
Int J Rehabil Res ; 43(3): 195-198, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32769583

ABSTRACT

The aim of this systematic review was, first, to determine whether or not individuals with cognitive deficits after stroke were enrolled in trials that investigated upper limb robot-assisted therapy effectiveness, and, second, whether these trials measured cognitive outcomes. We retrieved 6 relevant systematic reviews covering, altogether, 66 articles and 2214 participants. Among these 66 clinical trials, only 10 (15%) enrolled stroke participants with impaired cognition, whereas 50 (76%) excluded those with impaired cognition. The remaining six trials (9%) were classified as unclear as they either excluded individuals unable to understand simple instructions or did not specify if those with cognitive disorders were included. Furthermore, only 5 trials (8%) used cognitive measures as outcomes. This review highlights a lack of consideration for individuals with cognitive impairments in upper limb robotic trials after stroke. However, cognition is important for complex motor relearning processes and should not be ignored.


Subject(s)
Cognition , Stroke Rehabilitation , Stroke , Humans , Robotics , Upper Extremity
6.
NeuroRehabilitation ; 45(2): 137-149, 2019.
Article in English | MEDLINE | ID: mdl-31498135

ABSTRACT

BACKGROUND: The ROBiGAME project aims to implement serious games on robots to rehabilitate upper limb (UL) motor function in children with cerebral palsy (CP). Serious game characteristics (target position, level of assistance/resistance, level of force) are typically adapted based on the child's assessment before and continuously during the game (measuring UL working area, kinematics and muscle strength). OBJECTIVE: This study developed an UL robotic motor assessment protocol to configure the serious game. METHODS: Forty-nine healthy children and 20 CP children participated in the study. The clinical assessment consisted of the child's UL length and isometric force. The robot assessment consisted of the child's UL working area (WA), the UL isometric and isokinetic force in three directions and the UL kinematics during a pointing task toward targets placed at different distances. RESULTS: Results showed that WA and UL isometric force were moderately to highly correlated with clinical measures. Ratios between the UL isokinetic force generated on three directions were established. The velocity and straightness indexes of all children increased when they had to reach to targets placed more distant. CONCLUSIONS: This protocol can be integrated into different serious games in order to continuously configure the game characteristics to a child's performance. TRIAL REGISTRATION: The study was registered at ClinicalTrials.gov (NCT02543424), 12 August 2015.


Subject(s)
Cerebral Palsy/physiopathology , Motor Skills , Neurologic Examination/methods , Robotics/methods , Upper Extremity/physiopathology , Biomechanical Phenomena , Child , Child, Preschool , Female , Humans , Male , Muscle Strength
7.
NeuroRehabilitation ; 44(2): 263-274, 2019.
Article in English | MEDLINE | ID: mdl-31006692

ABSTRACT

BACKGROUNDROBiGAME project aims to implement serious games on robots to rehabilitate upper limb (UL) in stroke patients. The serious game characteristics (target position, level of assistance/resistance, level of force) are adapted based on the patient's assessment before and continuously during the game (measuring UL working area, kinematics and muscle strength).OBJECTIVETo develop an UL robotic motor assessment protocol to configure the serious game.METHODS32 healthy subjects and 20 stroke patients participated in the study. Subjects were clinically assessed (UL length and isometric force) and using a robot. The robot assessment consisted of the patient's UL working area (WA), the UL isometric and isokinetic force in three directions and the UL kinematics during a pointing task toward targets placed at different distances.RESULTSThe WA and the UL isometric force were moderately to highly correlated with clinical measures (respectively ρ= 0.52; p = 0.003, ρ= 0.68-0.73; p < 0.001). Ratios between the UL isokinetic force generated on three directions were established. The velocity and straightness indexes of all subjects increased when subjects had to reach to targets placed more distantly (r= 0.82-0.90; ρ= 0.86-0.90 respectively; p < 0.001).CONCLUSIONSThis protocol can be integrated into a serious game in order to continuously configure the game characteristics to patient's performance.


Subject(s)
Robotics/methods , Stroke Rehabilitation/methods , Upper Extremity/physiopathology , Adult , Aged , Biomechanical Phenomena , Female , Humans , Male , Middle Aged , Motor Skills , Muscle Strength , Robotics/instrumentation , Stroke Rehabilitation/instrumentation
8.
Ann Phys Rehabil Med ; 62(5): 313-320, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31028900

ABSTRACT

BACKGROUND: Upper-limb robotic-assisted therapy (RAT) is promising for stroke rehabilitation, particularly in the early phase. When RAT is provided as partial substitution of conventional therapy, it is expected to be at least as effective or might be more effective than conventional therapy. Assessments have usually been restricted to the first 2 domains of the International classification of functioning, disability and health (ICF). OBJECTIVE: This was a pragmatic, multicentric, single-blind, randomized controlled trial to evaluate the effectiveness of upper-limb RAT used as partial substitution to conventional therapy in the early phase of stroke rehabilitation, following the 3 ICF domains. METHODS: We randomized 45 patients with acute stroke into 2 groups (conventional therapy, n=22, and RAT, n=23). Both interventions were dose-matched regarding treatment duration and lasted 9 weeks. The conventional therapy group followed a standard rehabilitation. In the RAT group, 4 sessions of conventional therapy (25%) were substituted by RAT each week. RAT consisted of moving the paretic upper limb along a reference trajectory while the robot provided assistance as needed. A blinded assessor evaluated participants before, just after the intervention and 6 months post-stroke, according to the ICF domains UL motor impairments, activity limitations, and social participation restriction. RESULTS: In total, 28 individuals were assessed after the intervention. The following were more improved in the RAT than conventional therapy group at 6 months post-stroke: gross manual dexterity (Box and Block test +7.7 blocks; P=0.02), upper-limb ability during functional tasks (Wolf Motor Function test +12%; P=0.02) and patient social participation (Stroke Impact Scale +18%; P=0.01). Participants' abilities to perform manual activities and activities of daily living improved similarly in both groups. CONCLUSION: For the same duration of daily rehabilitation, RAT combined with conventional therapy during the early rehabilitation phase after stroke is more effective than conventional therapy alone to improve gross manual dexterity, upper-limb ability during functional tasks and patient social participation.


Subject(s)
Exercise Therapy/methods , Paresis/rehabilitation , Robotics/methods , Stroke Rehabilitation/methods , Stroke/complications , Aged , Disability Evaluation , Female , Humans , Male , Middle Aged , Paresis/physiopathology , Recovery of Function , Single-Blind Method , Stroke/physiopathology , Treatment Outcome , Upper Extremity/physiopathology
9.
Arch Clin Neuropsychol ; 34(4): 481-494, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30084880

ABSTRACT

OBJECTIVE: Patients with hemineglect fail to respond to egocentric stimuli or allocentric parts of stimuli contralateral to the brain lesion. The clinical diagnosis of hemineglect mainly involves evaluation of the egocentric form, while less sensitive standardized tests exist for other forms. Our global aim is to develop an innovative integrative robot measure, the MonAmour test, combining the assessment of egocentric, allocentric and motor hemineglect. Here, we present the egocentric and allocentric evaluations. METHODS: Thirty-five first stroke patients (25 hemineglect) and 56 age-matched healthy controls were assessed on the index test (MonAmour) and on three reference standard tests (Bells test, Apples test and Neglect subtest of the Test for Attentional Performance). Based on controls' performance, normative data were created. Validity was evaluated between the MonAmour and the reference standard tests through correlations and test sensitivity/specificity. Reliability of the MonAmour was measured with test-retest and minimal detectable change. RESULTS: Results demonstrated moderate to strong correlations between the MonAmour and the reference standard tests (r = .40-.88, p < .001 - p = .016). The sensitivity was high (50%-96%), with accurate diagnosis of patients with hemineglect, and reliability was excellent (Intraclass Correlation Coefficient = .79-.95, p < .001). CONCLUSIONS: The MonAmour robot test is a valid, sensitive and reliable tool that can diagnose egocentric and allocentric hemineglect. Future studies will deepen the assessment and understanding of the different forms of hemineglect by testing the motor component of the test in order to use this accurate and integrative measure in daily clinical routine. REGISTRATION: ClinicalTrials.gov(NCT02543424).


Subject(s)
Diagnosis, Computer-Assisted/methods , Neuropsychological Tests , Perceptual Disorders/diagnosis , Robotics/methods , Adult , Aged , Aged, 80 and over , Attention , Case-Control Studies , Female , Functional Laterality , Humans , Male , Middle Aged , Perceptual Disorders/complications , Reference Values , Reproducibility of Results , Sensitivity and Specificity , Space Perception , Stroke/complications
10.
Int J Rehabil Res ; 41(2): 138-145, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29420360

ABSTRACT

The impact of transcranial direct current stimulation (tDCS) is controversial in the neurorehabilitation literature. It has been suggested that tDCS should be combined with other therapy to improve their efficacy. To assess the effectiveness of a single session of upper limb robotic-assisted therapy (RAT) combined with real or sham-tDCS in chronic stroke patients. Twenty-one hemiparetic chronic stroke patients were included in a randomized, controlled, cross-over double-blind study. Each patient underwent two sessions 7 days apart in a randomized order: (a) 20 min of real dual-tDCS associated with RAT (REAL+RAT) and (b) 20 min of sham dual-tDCS associated with RAT (SHAM+RAT). Patient dexterity (Box and Block and Purdue Pegboard tests) and upper limb kinematics were evaluated before and just after each intervention. The assistance provided by the robot during the intervention was also recorded. Gross manual dexterity (1.8±0.7 blocks, P=0.008) and straightness of movement (0.01±0.03, P<0.05) improved slightly after REAL+RAT compared with before the intervention. There was no improvement after SHAM+RAT. The post-hoc analyses did not indicate any difference between interventions: REAL+RAT and SHAM+RAT (P>0.05). The assistance provided by the robot was similar during both interventions (P>0.05). The results showed a slight improvement in hand dexterity and arm movement after the REAL+RAT tDCS intervention. The observed effect after a single session was small and not clinically relevant. Repetitive sessions could increase the benefits of this combined approach.


Subject(s)
Paresis/rehabilitation , Robotics , Stroke Rehabilitation/methods , Transcranial Direct Current Stimulation , Upper Extremity/physiopathology , Adult , Aged , Aged, 80 and over , Biomechanical Phenomena/physiology , Combined Modality Therapy , Cross-Over Studies , Double-Blind Method , Female , Humans , Male , Middle Aged , Motor Skills Disorders/physiopathology , Motor Skills Disorders/rehabilitation , Paresis/physiopathology , Stroke/physiopathology
11.
J Rehabil Med ; 49(7): 565-571, 2017 Jul 07.
Article in English | MEDLINE | ID: mdl-28664214

ABSTRACT

OBJECTIVE:  To assess the capacity of the robotic device REAplan to measure overall upper limb peak resistance force, as a reflection of upper limb spasticity. METHODS:  Twelve patients with chronic stroke presenting upper limb spasticity were recruited to the study. Patients underwent musculocutaneous motor nerve block to reduce the spasticity of elbow flexor muscles. Each patient was assessed before and after the motor nerve block. Overall the REAplan measured upper limb resistance force. The robot passively mobilized the patient's upper limb at various velocities (10, 20, 30, 40 and 50 cm/s) in a back-and-forth trajectory (30 cm). The peak resistance force was analysed for each forward movement. Ten movements were performed and averaged at each velocity condition. RESULTS: The overall upper limb resistance force increased proportionally to the mobilization velocity (p< 0.001). Resistance force decreased after the motor nerve block at 40 and 50 cm/s (p < 0.05). Overall upper limb resistance force results showed excellent correlation with the Modified Ashworth Scale for elbow flexor muscles, for each velocity condition equal or higher than 30 cm/s (ρ >0.6). CONCLUSION:  This study proposes a new, valid, reliable and sensitive protocol to quantify upper limb resistance force using the REAplan, as a reflection of upper limb spasticity.


Subject(s)
Muscle Spasticity/etiology , Robotic Surgical Procedures/methods , Robotics/methods , Stroke/complications , Chronic Disease , Female , Humans , Male , Middle Aged , Stroke/pathology , Stroke Rehabilitation
SELECTION OF CITATIONS
SEARCH DETAIL
...