Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Curr Radiopharm ; 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37909433

ABSTRACT

AIM: This study investigated the protective effects of three antioxidants on radiationinduced lung injury. BACKGROUND: Oxidative stress is one of the key outcomes of radiotherapy in normal tissues. It can induce severe injuries in lung tissue, which may lead to pneumonitis and fibrosis. Recently, interest in natural chemicals as possible radioprotectors has increased due to their reduced toxicity, cheaper price, and other advantages. OBJECTIVE: The present study was undertaken to evaluate the radioprotective effect of Alpha-lipoic Acid (LA), Resveratrol (RVT), and Apigenin (APG) against histopathological changes and oxidative damage and survival induced by ionizing radiation (IR) in the lung tissues of rats. METHODS: First, the lung tissue of 50 mature male Wistar rats underwent an 18 Gy gamma irradiation. Next, the rats were sacrificed and transverse sections were obtained from the lung tissues and stained with hematoxylin and eosin (H and E) and Mason trichrome (MTC) for histopathological evaluation. Then, the activity of Glutathione peroxidase (GPx), Superoxide Dismutase (SOD), and Malondialdehyde (MDA) was measured by an ELISA reader at 340, 405, and 550 nm. RESULTS: Based on the results of this study, IR led to a remarkable increase in morphological changes in the lung. However, APG, RVT, and LA could ameliorate the deleterious effects of IR in lung tissue. IR causes an increase in GPX level, and APG+IR administration causes a decrease in the level of GPX compared to the control group. Also, the results of this study showed that RVT has significant effects in reducing MDA levels in the short term. In addition, compared to the control group, IR and RVT+IR decrease the activity of SOD in the long term in the lung tissues of rats. Also, the analysis of results showed that weight changes in IR, LA+IR, APG+IR, and control groups were statistically significant. CONCLUSION: APG and RVT could prevent tissue damage induced by radiation effects in rat lung tissues. Hence, APG, LA, and RVT could provide a novel preventive action with their potential antioxidant anti-inflammatory properties, as well as their great safety characteristic.

2.
Biomed Pharmacother ; 167: 115557, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37757491

ABSTRACT

Radiotherapy as a standard method for cancer treatment faces tumor recurrence and antitumoral unresponsiveness. Suppressive tumor microenvironment (TME) and hypoxia are significant challenges affecting efficacy of radiotherapy. Herein, a versatile method is introduced for the preparation of pH-sensitive catalase-gold cross-linked nanoaggregate (Au@CAT) having acceptable stability and selective activity in tumor microenvironment. Combining Au@CAT with low-dose radiotherapy enhanced radiotherapy effects via polarizing protumoral immune cells to the antitumoral landscape. This therapeutic approach also attenuated hypoxia, confirmed by downregulating hypoxia hallmarks, such as hypoxia-inducible factor α-subunits (HIF-α), vascular endothelial growth factor (VEGF), and EGF. Catalase stability against protease digestion was improved significantly in Au@CAT compared to the free catalase. Moreover, minimal toxicity of Au@CAT on normal cells and increased reactive oxygen species (ROS) were confirmed in vitro compared with radiotherapy. Using the nanoaggregates combined with radiotherapy led to a significant reduction of immunosuppressive infiltrating cells such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells (T-regs) compared to the other groups. While, this combined therapy could significantly increase the frequency of CD8+ cells as well as M1 to M2 macrophages (MQs) ratio. The combination therapy also reduced the tumor size and increased survival rate in mice models of colorectal cancer (CRC). Our results indicate that this innovative nanocomposite could be an excellent system for catalase delivery, manipulating the TME and providing a potential therapeutic strategy for treating CRC.

3.
PLoS One ; 11(12): e0168519, 2016.
Article in English | MEDLINE | ID: mdl-28036387

ABSTRACT

Breast cancer is the most common cancer in women worldwide. Doxorubicin-based chemotherapy is used to treat breast cancer patients; however, neutropenia is a common hematologic side effect and can be life-threatening. The ABCB1 and SLC22A16 genes encode proteins that are essential for doxorubicin transport. In this study, we explored the effect of 2 common polymorphisms in ABCB1 (rs10276036 C/T) and SLC22A16 (rs12210538 A/G) on the development of grade 3/4 febrile neutropenia in Iranian breast cancer patients. Our results showed no significant association between these polymorphisms and grade 3/4 febrile neutropenia; however, allele C of ABCB1 (rs10276036 C/T) (p = 0.315, OR = 1.500, 95% CI = 0.679-3.312) and allele A of SLC22A16 (rs12210538 A/G) (p = 0.110, OR = 2.984, 95% CI = 0.743-11.988) tended to have a greater association with grade 3/4 febrile neutropenia, whereas allele T of ABCB1 (rs10276036) (p = 0.130, OR = 0.515, 95% CI = 0.217-1.223) and allele G of SLC22A16 (rs12210538) (p = 0.548, OR = 0.786, 95% CI = 0.358-1.726) tended to protect against this condition. In addition to breast cancer, a statistically significant association was also observed between the development of grade 3/4 febrile neutropenia and other clinical manifestations such as stage IIIC cancer (p = 0.037) and other diseases (p = 0.026). Our results indicate that evaluation of the risk of grade 3/4 neutropenia development and consideration of molecular and clinical findings may be of value when screening for high-risk breast cancer patients.


Subject(s)
Breast Neoplasms/genetics , Doxorubicin/adverse effects , Febrile Neutropenia/chemically induced , Febrile Neutropenia/genetics , Organic Cation Transport Proteins/genetics , Polymorphism, Single Nucleotide/genetics , ATP Binding Cassette Transporter, Subfamily B/genetics , Adult , Aged , Aged, 80 and over , Alleles , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Case-Control Studies , Doxorubicin/therapeutic use , Female , Genotype , Humans , Incidence , Iran , Middle Aged , Young Adult
4.
Brachytherapy ; 15(4): 514-523, 2016.
Article in English | MEDLINE | ID: mdl-27180127

ABSTRACT

PURPOSE: To demonstrate the utility of "3D Slicer" for easy treatment verification by comparing dose-volume histograms (DVHs) calculated on pretreatment and posttreatment images. METHODS AND MATERIALS: Thirty cervical cancer patients were CT scanned twice: first for treatment planning and a second time after the dose delivery. The initial plan was manually duplicated on the posttreatment image set in Flexiplan treatment planning system, and DVH parameters were calculated. Pretreatment and posttreatment images, organ structures, and plan data were exported from the treatment planning system to 3D Slicer to validate DVH parameter calculation with 3D Slicer. The gamma analysis was used to compare Flexiplan and 3D Slicer DVHs. Posttreatment images were rigidly fused on the initial CT to automatically transfer the data of the pretreatment plan onto the posttreatment images. DVH parameters were calculated in 3D Slicer for both image sets, and their relative variations were compared. RESULTS: In calculating DVH parameter variations, no significant differences were observed between Flexiplan and 3D Slicer. Where the registration accuracy was better than 0.03, they returned similar results for D2 cm(3) of bladder, rectum, and sigmoid. Mean and standard deviation of DVH parameters were calculated on pretreatment and posttreatment images for several organs; both the manually duplicated plan and the automatically registered plan in SlicerRT returned comparable relative variations of these parameters. For 88% of the organs, more than 95% of the DVH dose bins passed the gamma analysis. CONCLUSIONS: We tested an automated DVH assessment method with an imaging freeware, 3D Slicer, for use in image-guided adaptive brachytherapy. SlicerRT is a viable verification tool to report and detect DVH variations between different contoured images series.


Subject(s)
Brachytherapy/methods , Organs at Risk , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Uterine Cervical Neoplasms/radiotherapy , Colon, Sigmoid/diagnostic imaging , Dose Fractionation, Radiation , Female , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Prospective Studies , Rectum/diagnostic imaging , Tomography, X-Ray Computed , Urinary Bladder/diagnostic imaging , Uterine Cervical Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...