Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Zookeys ; 891: 71-118, 2019.
Article in English | MEDLINE | ID: mdl-31802973

ABSTRACT

Bumble bees (Bombus spp.) are a widespread corbiculate lineage (Apinae: Corbiculata: Bombini), mostly found among temperate and alpine ecosystems. Approximately 260 species have been recognized and grouped recently into a simplified system of 15 subgenera. Most of the species are nest-building and primitively eusocial. Species of Bombus have been more intensely studied than any other lineages of bees with the exception of the honey bees. However, most bumble bee fossils are poorly described and documented, making their placement relative to other Bombus uncertain. A large portion of the known and presumed bumble bee fossils were re-examined in an attempt to better understand their affinities with extant Bombini. The taxonomic affinities of fossil specimens were re-assessed based on morphological features and previous descriptions, and for 13 specimens based on geometric morphometrics of forewing shape. None of the specimens coming from Eocene and Oligocene deposits were assigned within the contemporary shape space of any subgenus of Bombus. It is shown that Calyptapis florissantensis Cockerell, 1906 (Eocene-Oligocene boundary, Florissant shale, Colorado, USA) and Oligobombus cuspidatus Antropov, 2014 (Late Eocene, Bembridge Marls) likely belong to stem-group Bombini. Bombus anacolus Zhang, 1994, B. dilectus Zhang, 1994, B. luianus Zhang, 1990 (Middle Miocene, Shanwang Formation), as well as B. vetustus Rasnitsyn & Michener, 1991 (Miocene, Botchi Formation) are considered as species inquirenda. In the Miocene, affinities of fossils with derived subgenera of Bombus s. l. increased, and some are included in the shape space of contemporary subgenera: Cullumanobombus (i.e., B. pristinus Unger, 1867, B. randeckensis Wappler & Engel, 2012, and B. trophonius Prokop, Dehon, Michez & Engel, 2017), Melanobombus (i.e., B. cerdanyensis Dehon, De Meulemeester & Engel, 2014), and Mendacibombus (i.e., B. beskonakensis (Nel & Petrulevicius, 2003), new combination), agreeing with previous estimates of diversification.

2.
PeerJ ; 6: e4242, 2018.
Article in English | MEDLINE | ID: mdl-29362693

ABSTRACT

Shape is a natural phenomenon inherent to many different lifeforms. A modern technique to analyse shape is geometric morphometrics (GM), which offers a whole range of methods concerning the pure shape of an object. The results from these methods have provided new insights into biological problems and have become especially useful in the fields of entomology and palaeontology. Despite the conspicuous successes in other hymenopteran groups, GM analysis of wings and fossil wings of Formicidae has been neglected. Here we tested if landmarks defining the wing shape of fossil ants that belong to the genus Titanomyrma are reliable and if this technique is able to expose relationships among different groups of the largest Hymenoptera that ever lived. This study comprises 402 wings from 362 ants that were analysed and assigned with the GM methods linear discriminant function analysis, principal component analysis, canonical variate analysis, and regression. The giant ant genus Titanomyrma and the parataxon Formicium have different representatives that are all very similar but these modern methods were able to distinguish giant ant types even to the level of the sex. Thirty-five giant ant specimens from the Eckfeld Maar were significantly differentiable from a collection of Messel specimens that consisted of 187 Titanomyrma gigantea females and 42 T. gigantea males, and from 74 Titanomyrma simillima females and 21 T. simillima males. Out of the 324 Messel ants, 127 are newly assigned to a species and 223 giant ants are newly assigned to sex with GM analysis. All specimens from Messel fit to the two species. Moreover, shape affinities of these groups and the species Formicium brodiei, Formicium mirabile, and Formicium berryi, which are known only from wings, were investigated. T. gigantea stands out with a possible female relative in one of the Eckfeld specimens whereas the other groups show similar shape patterns that are possibly plesiomorphic. Formicidae are one of the most dominant taxa in the animal kingdom and new methods can aid in investigating their diversity in the present and in deep time. GM of the ant wing delivers significant results and this core of methods is able to enhance the toolset we have now to analyse the complex biology of the ants. It can prove as especially useful in the future when incorporated into better understanding aspects of evolutionary patterns and ant palaeontology.

3.
Zookeys ; (710): 43-63, 2017.
Article in English | MEDLINE | ID: mdl-29118643

ABSTRACT

A new species of fossil bumble bee (Apinae: Bombini) is described and figured from Early Miocene (Burdigalian) deposits of the Most Basin at the Bílina Mine, Czech Republic. Bombus trophoniussp. n., is placed within the subgenus Cullumanobombus Vogt and distinguished from the several species groups therein. The species is apparently most similar to the Nearctic B. (Cullumanobombus) rufocinctus Cresson, the earliest-diverging species within the clade and the two may be related only by symplesiomorphies. The age of the fossil is in rough accordance with divergence estimations for Cullumanobombus.

4.
PLoS One ; 9(10): e108865, 2014.
Article in English | MEDLINE | ID: mdl-25354170

ABSTRACT

Bees (Anthophila) are one of the major groups of angiosperm-pollinating insects and accordingly are widely studied in both basic and applied research, for which it is essential to have a clear understanding of their phylogeny, and evolutionary history. Direct evidence of bee evolutionary history has been hindered by a dearth of available fossils needed to determine the timing and tempo of their diversification, as well as episodes of extinction. Here we describe four new compression fossils of bees from three different deposits (Miocene of la Cerdanya, Spain; Oligocene of Céreste, France; and Eocene of the Green River Formation, U.S.A.). We assess the similarity of the forewing shape of the new fossils with extant and fossil taxa using geometric morphometrics analyses. Predictive discriminant analyses show that three fossils share similar forewing shapes with the Apidae [one of uncertain tribal placement and perhaps near Euglossini, one definitive bumble bee (Bombini), and one digger bee (Anthophorini)], while one fossil is more similar to the Andrenidae. The corbiculate fossils are described as Euglossopteryx biesmeijeri De Meulemeester, Michez, & Engel, gen. nov. sp. nov. (type species of Euglossopteryx Dehon & Engel, n. gen.) and Bombus cerdanyensis Dehon, De Meulemeester, & Engel, sp. nov. They provide new information on the distribution and timing of particular corbiculate groups, most notably the extension into North America of possible Eocene-Oligocene cooling-induced extinctions. Protohabropoda pauli De Meulemeester & Michez, gen. nov. sp. nov. (type species of Protohabropoda Dehon & Engel, n. gen.) reinforces previous hypotheses of anthophorine evolution in terms of ecological shifts by the Oligocene from tropical to mesic or xeric habitats. Lastly, a new fossil of the Andreninae, Andrena antoinei Michez & De Meulemeester, sp. nov., further documents the presence of the today widespread genus Andrena Fabricius in the Late Oligocene of France.


Subject(s)
Bees/classification , Bees/genetics , Biological Evolution , Fossils/anatomy & histology , Wings, Animal/anatomy & histology , Animals , Bees/anatomy & histology , Female , Male
5.
Zookeys ; (389): 35-48, 2014.
Article in English | MEDLINE | ID: mdl-24715773

ABSTRACT

Although bees are one of the major lineages of pollinators and are today quite diverse, few well-preserved fossils are available from which to establish the tempo of their diversification/extinction since the Early Cretaceous. Here we present a reassessment of the taxonomic affinities of Melitta willardiCockerell 1909, preserved as a compression fossil from the Florissant shales of Colorado, USA. Based on geometric morphometric wing shape analyses M. willardi cannot be confidently assigned to the genus Melitta Kirby (Anthophila, Melittidae). Instead, the species exhibits phenotypic affinity with the subfamily Andreninae (Anthophila, Andrenidae), but does not appear to belong to any of the known genera therein. Accordingly, we describe a new genus, Andrenopteryx gen. n., based on wing shape as well as additional morphological features and to accommodate M. willardi. The new combination Andrenopteryx willardi (Cockerell) is established.

SELECTION OF CITATIONS
SEARCH DETAIL
...