Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Ecol ; 93(7): 918-931, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38790091

ABSTRACT

Phenological adjustment is the first line of adaptive response of vertebrates when seasonality is disrupted by climate change. The prevailing response is to reproduce earlier in warmer springs, but habitat changes, such as forest degradation, are expected to affect phenological plasticity, for example, due to loss of reliability of environmental cues used by organisms to time reproduction. Relying on a two-decade, country-level capture-based monitoring of common songbirds' reproduction, we investigated how habitat anthropization, here characterized by the rural-urban and forest-farmland gradients, affected the average phenology and plasticity to local temperature in two common species, the great tit Parus major and the blue tit Cyanistes caeruleus. We built a hierarchical model that simultaneously estimated fledging phenology and its response to spring temperatures based on the changes in the proportion of juveniles captured over the breeding season. Both species fledge earlier in warmer sites (blue tit: 2.94 days/°C, great tit: 3.83 days/°C), in warmer springs (blue tit: 2.49 days/°C, great tit: 2.75 days/°C) and in most urbanized habitats (4 days for blue tit and 2 days for great tit). The slope of the reaction norm of fledging phenology to spring temperature varied across sites in both species, but this variation was explained by habitat anthropization only in the deciduous forest specialist, the blue tit. In this species, the responses to spring temperature were shallower in agricultural landscapes and slightly steeper in more urban areas. Habitat anthropization did not explain variation in the slope of the reaction norm in the habitat-generalist species (great tit), for which mean fledgling phenology and plasticity were correlated (i.e., steeper response in later sites). The effects of habitat change on phenological reaction norms provide another way through which combined environmental degradations may threaten populations' persistence, to an extent depending on species and on the changes in their prey phenology and abundance.


Subject(s)
Climate Change , Ecosystem , Seasons , Songbirds , Animals , Songbirds/physiology , Reproduction , Temperature , Forests , Urbanization
2.
Ecology ; 105(6): e4305, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679955

ABSTRACT

Synchronous variation in demographic parameters across species increases the risk of simultaneous local extinction, which lowers the probability of subsequent recolonization. Synchrony therefore tends to destabilize meta-populations and meta-communities. Quantifying interspecific synchrony in demographic parameters, like abundance, survival, or reproduction, is thus a way to indirectly assess the stability of meta-populations and meta-communities. Moreover, it is particularly informative to identify environmental drivers of interspecific synchrony because those drivers are important across species. Using a Bayesian hierarchical multisite multispecies mark-recapture model, we investigated temporal interspecific synchrony in annual adult apparent survival for 16 common songbird species across France for the period 2001-2016. Annual adult survival was largely synchronous among species (73%, 95% credible interval [47%-94%] of the variation among years was common to all species), despite species differing in ecological niche and life history. This result was robust to different model formulations, uneven species sample sizes, and removing the long-term trend in survival. Synchrony was also shared across migratory strategies, which suggests that environmental forcing during the 4-month temperate breeding season has a large-scale, interspecific impact on songbird survival. However, the strong interspecific synchrony was not easily explained by a set of candidate weather variables we defined a priori. Spring weather variables explained only 1.4% [0.01%-5.5%] of synchrony, while the contribution of large-scale winter weather indices may have been stronger but uncertain, accounting for 12% [0.3%-37%] of synchrony. Future research could jointly model interspecific variation and covariation in breeding success, age-dependent survival, and age-dependent dispersal to understand when interspecific synchrony in abundance emerges and destabilizes meta-communities.


Subject(s)
Models, Biological , Songbirds , Animals , Songbirds/physiology , France , Population Dynamics , Time Factors , Ecosystem , Seasons , Species Specificity , Longevity
3.
PLoS One ; 11(11): e0166701, 2016.
Article in English | MEDLINE | ID: mdl-27893770

ABSTRACT

How the spatial expansion of a species changes at a human time scale is a process difficult to determine. We studied the dispersal pattern of the French white stork population, using a 21-year ringing/resighting dataset. We used the graph-theory to investigate the strength of links between 5 populations (North-East, North-West, Centre, West, and South) and to determine factors important for the birds' movements. Two clusters of populations were identified within the metapopulation, with most frequent movements of individuals between North-Eastern and Centre populations, and between North-Western and Western populations. Exchanges of individuals between populations were asymmetrical, where North-Eastern and North-Western populations provided more emigrants than they received immigrants. Neither the geographical distance between populations, nor the difference in densities influenced the number of individuals exchanging between populations. The graph-theory approach provides a dynamic view of individual movements within a metapopulation and might be useful for future population studies in the context of conservation.


Subject(s)
Birds/physiology , Population Dynamics , Animal Migration , Animals , France , Humans , Population Density
4.
Ecol Lett ; 9(12): 1321-30, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17118006

ABSTRACT

The identification of the characteristics of species that make them susceptible or resilient to climate change has been elusive because non-climatic influences may dominate short- and medium-term changes in population and distribution sizes. Here we studied the 2003 French heat wave, during which other confounding variables remained essentially unchanged, with a correlational approach. We tested the relationship between population resilience and thermal range by analysing the responses of 71 bird species to a 6-month heat wave. Species with small thermal ranges showed the sharpest decreases in population growth rate between 2003 and 2004 in locations with the highest temperature anomalies. Thermal range explained the resilience of birds to the heat wave independently of other potential predictors, although it correlated with nest location and broad habitat type used by species. The geographically deduced thermal range appears to be a reliable predictor of the resilience of these endothermic species to extreme temperatures.


Subject(s)
Birds/physiology , Hot Temperature , Animals , Birds/classification , Climate , Ecosystem , France , Population Growth
SELECTION OF CITATIONS
SEARCH DETAIL
...