Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-33531299

ABSTRACT

Multipath and off-axis scattering are two of the primary mechanisms for ultrasound image degradation. To address their impact, we have proposed Aperture Domain Model Image REconstruction (ADMIRE). This algorithm utilizes a model-based approach in order to identify and suppress sources of acoustic clutter. The ability of ADMIRE to suppress clutter and improve image quality has been demonstrated in previous works, but its use for real-time imaging has been infeasible due to its significant computational requirements. However, in recent years, the use of graphics processing units (GPUs) for general-purpose computing has enabled the significant acceleration of compute-intensive algorithms. This is because many modern GPUs have thousands of computational cores that can be utilized to perform massively parallel processing. Therefore, in this work, we have developed a GPU-based implementation of ADMIRE. The implementation on a single GPU provides a speedup of two orders of magnitude when compared to a serial CPU implementation, and additional speedup is achieved when the computations are distributed across two GPUs. In addition, we demonstrate the feasibility of the GPU implementation to be used for real-time imaging by interfacing it with a Verasonics Vantage 128 ultrasound research system. Moreover, we show that other beamforming techniques, such as delay-and-sum (DAS) and short-lag spatial coherence (SLSC), can be computed and simultaneously displayed with ADMIRE. The frame rate depends upon various parameters, and this is exhibited in the multiple imaging cases that are presented. An open-source code repository containing CPU and GPU implementations of ADMIRE is also provided.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Computer Graphics , Diagnostic Imaging , Ultrasonography
2.
Article in English | MEDLINE | ID: mdl-32746227

ABSTRACT

Clutter produced using bright acoustic sources can obscure weaker acoustic targets, degrading the quality of the image in scenarios with high dynamic ranges. Many adaptive beamformers seek to improve image quality by reducing these sidelobe artifacts, generating a boost in contrast ratio or contrast-to-noise ratio. However, some of these beamformers inadvertently introduce a dark region artifact in place of the strong clutter, a situation that occurs when both clutter and the underlying signal of interest are removed. We introduce the iterative aperture domain model image reconstruction (iADMIRE) method that is designed to reduce clutter while preserving the underlying signal. We compare the contrast ratio dynamic range (CRDR) of iADMIRE to several other adaptive beamformers plus delay-and-sum (DAS) to quantify the accuracy and reliability of the reported measured contrast for each beamformer over a wide range of contrast levels. We also compare all beamformers in the presence of bright targets ranging from 40 to 120 dB to observe the presence of sidelobes. In cases with no added reverberation clutter, iADMIRE had a CRDR of 75.6 dB when compared with the next best method DAS with 60.8 dB. iADMIRE also demonstrated the best performance for levels of reverberation clutter up to 0-dB signal-to-clutter ratio. Finally, iADMIRE restored underlying speckle signal in dark artifact regions while suppressing sidelobes in bright target cases up to 100 dB.


Subject(s)
Acoustics , Artifacts , Image Processing, Computer-Assisted , Phantoms, Imaging , Reproducibility of Results , Signal-To-Noise Ratio , Ultrasonography
3.
Ultrason Imaging ; 42(3): 159-176, 2020 05.
Article in English | MEDLINE | ID: mdl-32362201

ABSTRACT

We perform finite element modeling of pulse-echo ultrasound of a hard inclusion in a soft tissue to gain a better understanding of B-mode image brightness characteristics. We simulate a pressure wave emitted by an ultrasound transducer through the inclusion-tissue medium by prescribing suitable boundary conditions, and collect the scattered wave response to simulate the behavior of the transducer array used for pulse-echo ultrasound. We form B-mode images from simulated channel data using standard delay and sum beamforming. We establish the accuracy of the finite element model by comparing the point spread function with that obtained from Field II ultrasound simulation program. We also demonstrate qualitative validation by comparing the brightness characteristics of rough and smooth surfaced circular inclusions with experimental images of a cylindrical metal tool immersed in a water tank. We next conduct simulation studies to evaluate changes in B-mode image brightness intensity and contrast related to different constitutive properties, namely, compressibility of the inclusion, impedance contrast between the host and inclusion, and surface roughness of the inclusion. We find that the intensity observed behind a hard inclusion in the axial direction is strongly affected by the compressibility and roughness of the inclusion. Also, the perceived width of the stone based on the intensity is greater for rougher stones. Our study indicates that imaging of compressible inclusions may benefit from targeted B-mode image forming algorithms. Our modeling framework can potentially be useful in differentiating hard inclusions from surrounding parenchyma, and for classifying kidney stones or gallstones.


Subject(s)
Gallstones/diagnostic imaging , Image Processing, Computer-Assisted/methods , Kidney Calculi/diagnostic imaging , Ultrasonography/methods , Algorithms , Computer Simulation , Phantoms, Imaging , Transducers
4.
Article in English | MEDLINE | ID: mdl-31251180

ABSTRACT

Aperture domain model image reconstruction (ADMIRE) is a useful tool to mitigate ultrasound imaging artifacts caused by acoustic clutter. However, its lengthy run-time impairs its usefulness. To overcome this drawback, we evaluated the reduced model methods with otherwise similar performance to ADMIRE. We also assessed other approaches to speed up ADMIRE, including the use of different levels of short-time Fourier transform (STFT) window overlap and examining the degrees of freedom of the model fit. In this study, we conducted an analysis of the reduced models, including those using Gram-Schmidt orthonormalization (GSO), singular value decomposition (SVD), and independent component analysis (ICA). We evaluated these reduced models using the data from simulations, experimental phantoms, and in vivo liver scans. We then tested ADMIRE's performance using full, GSO, SVD, and ICA-fourth-order blind identification (ICA-FOBI) models. The results from simulations, experimental phantoms, and in vivo data indicate that a model reduced using the ICA-FOBI method is the most promising for accelerating ADMIRE implementation. In the in vivo liver data, the improvements in contrast relative to delay-and-sum (DAS) using a full model, GSO, SVD, and ICA-FOBI models are 6.29 ± 0.25 dB, 11.88 ± 0.90 dB, 9.01 ± 0.67 dB, and 6.36 ± 0.27 dB, respectively; whereas, the contrast-to-noise ratio (CNR) improvement values in the same order are 0.04 ± 0.06 dB, -1.70 ± 0.17 dB, -1.51 ± 0.19 dB, and 0.12 ± 0.07 dB, respectively. The implementation of ADMIRE using the reduced model methods can decrease ADMIRE's computational complexity over three orders of magnitude. The use of a 50% STFT window overlap reduces ADMIRE's serial run time by more than one order of magnitude without any remarkable loss of image quality, when compared to the use of a 90% window overlap used previously. Based on these findings, a combination of the ICA-FOBI model and the use of a 50% STFT window overlap makes the ADMIRE algorithm more computationally efficient.


Subject(s)
Image Processing, Computer-Assisted/methods , Signal Processing, Computer-Assisted , Ultrasonography/methods , Algorithms , Artifacts , Humans , Liver/diagnostic imaging , Phantoms, Imaging
5.
PLoS One ; 13(8): e0203138, 2018.
Article in English | MEDLINE | ID: mdl-30153279

ABSTRACT

PURPOSE: Ultrasound methods for kidney stone imaging suffer from poor sensitivity and size overestimation. The study objective was to demonstrate feasibility of non-linear ultrasound beamforming methods for stone imaging, including plane wave synthetic focusing (PWSF), short-lag spatial coherence (SLSC) imaging, mid-lag spatial coherence (MLSC) imaging with incoherent compounding, and aperture domain model image reconstruction (ADMIRE). MATERIALS AND METHODS: The ultrasound techniques were evaluated in an in vitro kidney stone model and in a pilot study of 5 human stone formers (n = 6 stones). Stone contrast, contrast-to-noise ratio (CNR), sizing, posterior shadow contrast, and shadow width sizing were compared among the different techniques and to B-mode. CT imaging within 60 days was considered the gold standard stone size. Paired t-tests using Bonferroni correction were performed to evaluate comparing each technique with B-mode. RESULTS: Mean CT measured stone size was 6.0mm (range 2.9-12.2mm) with mean skin-to-stone distance 10.2cm (range 5.4-16.3cm). Compared to B-mode, stone contrast was best with ADMIRE (mean +12.2dB), while SLSC and MLSC showed statistically improved CNR. Sizing was best with ADMIRE (mean +1.3mm error), however this was not significantly improved over B-mode (+2.4mm). PWSF performed similarly to B-mode for stone contrast, CNR, SNR, and stone sizing. In the in vitro model, the shadow contrast was highest with ADMIRE (mean 10.5 dB vs 3.1 dB with B-mode). Shadow sizing was best with SLSC (mean error +0.9mm ± 2.9), however the difference compared to B-mode was not significant. CONCLUSIONS: The detection and sizing of stones are feasible with advanced beamforming methods with ultrasound. ADMIRE, SLSC, and MLSC hold promise for improving stone detection, shadow contrast, and sizing.


Subject(s)
Kidney Calculi/diagnostic imaging , Ultrasonography/methods , Aged , Algorithms , Feasibility Studies , Female , Humans , Male , Middle Aged , Nonlinear Dynamics , Pattern Recognition, Automated/methods , Pilot Projects , Prospective Studies , Tomography, X-Ray Computed
6.
J Med Imaging (Bellingham) ; 5(2): 027001, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29721516

ABSTRACT

We are interested in examining how our model-based beamforming algorithm, referred to as aperture-domain model image reconstruction (ADMIRE), performs on plane wave sequences in conjunction with synthetic aperture beamforming. We also aim to identify the impact of ADMIRE applied before and after synthetic focusing. We employed simulated phantoms using Field II and tissue-mimicking phantoms to evaluate ADMIRE as applied to synthetic sequencing. We generated plane wave images with and without synthetic aperture focusing (SAF) and measured contrast and contrast-to-noise ratio (CNR). For simulated cyst images formed from single plane waves, the contrast for delay-and-sum (DAS) and ADMIRE are 15.64 and 28.34 dB, respectively, whereas the CNR are 1.76 and 3.90 dB, respectively. We also applied ADMIRE to simulated resolution phantoms having a point target at 3 cm depth on-axis. We simulated the point spread functions from data obtained from 1 plane wave and 75 steered plane waves, along with linear scans with 3 and 4 cm- focal depths. We then compared the outcome of applying ADMIRE before and after SAF using 3 and 11 steered plane waves. Finally, we applied this to an in vivo carotid artery. Based on the findings in this study, ADMIRE can be adapted to full field insonification sequences to improve image quality in plane wave imaging. Additionally, we investigated how robustly ADMIRE performs in the presence of random noise. We then address identified limitations using a conventional envelope detection method with decluttered signals.

7.
Ultrasonics ; 89: 34-45, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29723842

ABSTRACT

Previously, we introduced a model-based beamforming algorithm to suppress ultrasound imaging artifacts caused by clutter sources, such as reverberation and off-axis scattering. We refer to this method as aperture domain model image reconstruction (ADMIRE). In this study, we evaluated the algorithm's limitations and ability to suppress off-axis energy using Field II-based simulations, experimental phantoms and in vivo data acquired by a Verasonics ultrasound system with a curvilinear transducer (C5-2). We compared image quality derived from a standard delay-and-sum (DAS) beamformer, DAS with coherence factor (CF) weighting, ADMIRE and ADMIRE plus CF weighting. Simulations, phantoms and in vivo scan results demonstrate that ADMIRE substantially suppresses off-axis energy, while preserving the spatial resolution of standard DAS beamforming. We also observed that ADMIRE with CF weighting further improves some aspects of image quality. We identified limitations of ADMIRE when suppressing off-axis clutter in the presence of strong scattering, and we suggest a solution. Finally, because ADMIRE is a model-based beamformer, we used simulated phantoms to test the performance of ADMIRE under model-mismatch caused by gross sound speed deviation. The impact of sound speed errors largely mimics DAS beamforming, but ADMIRE never does worse than DAS itself in resolution or contrast. As expected the CF weighting used as a post processing technique provides a boost in contrast but decreases CNR and speckle SNR. The results indicate that ADMIRE is robust in terms of model-mismatch caused by sound speed variation, especially when the actual sound speed is slower than the assumed sound speed. As an example, the image contrast obtained using DAS, DAS + CF, ADMIRE and ADMIRE + CF in the presence of -5% gross sound speed error are 24.9 ±â€¯0.71 dB, 39.1 ±â€¯1.2 dB, 43.2 ±â€¯2.3 dB and 52.5 ±â€¯2.9 dB, respectively.

8.
Article in English | MEDLINE | ID: mdl-28742033

ABSTRACT

Recent studies reveal that both phase aberration and reverberation play a major role in degrading ultrasound image quality. We previously developed an algorithm for suppressing clutter, but we have not yet tested it in the context of aberrated wavefronts. In this paper, we evaluate our previously reported algorithm, called aperture domain model image reconstruction (ADMIRE), in the presence of phase aberration and in the presence of multipath scattering and phase aberration. We use simulations to investigate phase aberration corruption and correction in the presence of reverberation. As part of this paper, we observed that ADMIRE leads to suppressed levels of aberration. In order to accurately characterize aberrated signals of interest, we introduced an adaptive component to ADMIRE to account for aberration, referred to as adaptive ADMIRE. We then use ADMIRE, adaptive ADMIRE, and conventional filtering methods to characterize aberration profiles on in vivo liver data. These in vivo results suggest that adaptive ADMIRE could be used to better characterize a wider range of aberrated wavefronts. The aberration profiles' full-width at half-maximum of ADMIRE, adaptive ADMIRE, and postfiltered data with 0.4- mm-1 spatial cutoff frequency are 4.0 ± 0.28 mm, 2.8 ± 1.3 mm, and 2.8 ± 0.57 mm, respectively, while the average root-mean square values in the same order are 16 ± 5.4 ns, 20 ± 6.3 ns, and 19 ± 3.9 ns, respectively. Finally, because ADMIRE suppresses aberration, we perform a limited evaluation of image quality using simulations and in vivo data to determine how ADMIRE and adaptive ADMIRE perform with and without aberration correction.


Subject(s)
Image Processing, Computer-Assisted/methods , Ultrasonography/methods , Algorithms , Computer Simulation , Phantoms, Imaging
9.
Article in English | MEDLINE | ID: mdl-26559622

ABSTRACT

Acoustic clutter produced by off-axis and multipath scattering is known to cause image degradation, and in some cases these sources may be the prime determinants of in vivo image quality. We have previously shown some success addressing these sources of image degradation by modeling the aperture domain signal from different sources of clutter, and then decomposing aperture domain data using the modeled sources. Our previous model had some shortcomings including model mismatch and failure to recover B-Mode speckle statistics. These shortcomings are addressed here by developing a better model and by using a general regularization approach appropriate for the model and data. We present results with L1 (lasso), L2 (ridge), and L1/L2 combined (elastic-net) regularization methods. We call our new method aperture domain model image reconstruction (ADMIRE). Our results demonstrate that ADMIRE with L1 regularization, or weighted toward L1 in the case of elastic-net regularization, have improved image quality. L1 by itself works well, but additional improvements are seen with elastic-net regularization over the pure L1 constraint. On in vivo example cases, L1 regularization showed mean contrast improvements of 4.6 and 6.8 dB on fundamental and harmonic images, respectively. Elastic net regularization (α = 0.9) showed mean contrast improvements of 17.8 dB on fundamental images and 11.8 dB on harmonic images. We also demonstrate that in uncluttered Field II simulations the decluttering algorithm produces the same contrast, contrast-tonoise ratio, and speckle SNR as normal B-mode imaging, demonstrating that ADMIRE preserves typical image features.


Subject(s)
Image Processing, Computer-Assisted/methods , Signal Processing, Computer-Assisted , Ultrasonography/methods , Algorithms , Humans , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...