Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 11(5)2022 May 11.
Article in English | MEDLINE | ID: mdl-35625284

ABSTRACT

Fungal infections represent a serious complication during the post-liver transplantation period. Abdominal infections can occur following pre-existing colonization, surgical procedures, and permanence of abdominal tubes. In our center, liposomal amphotericin-B is used as antifungal prophylaxis in pediatric patients undergoing liver transplantation. The aim of this study is to evaluate peritoneal levels of amphotericin-B following intravenous administration. Six liver recipients received liposomal amphotericin-B. Three of them were treated as prophylaxis; meanwhile, three patients received liposomal amphotericin-B to treat Candida albicans infection. Plasma and peritoneal amphotericin-B levels were measured by LC-MS/MS in two consecutive samplings. Cmin (pre-dose) and Cmax (2 h after the end of infusion) were evaluated as drug exposure parameters for both plasma and peritoneum. Our results showed that peritoneal amphotericin-B levels were significantly lower than plasma and that the correlation coefficient was 0.72 (p = 0.03) between plasma and peritoneal Cmin. Moreover, although peritoneal levels were within the therapeutic range, they never reached the PK/PD target (Cmax/MIC > 4.5). In conclusion, PK exposure parameters could be differently used to analyze amphotericin-B concentrations in plasma and peritoneum. However, liposomal amphotericin-B should be preferred in these patients as prophylactic rather than therapeutic treatment for fungal infections.

3.
Neurol Res ; 35(2): 149-58, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23452577

ABSTRACT

OBJECTIVE: To analyze the diagnostic, monitoring, and procedural applications of ultrasound (US) imaging in neurocritical care (NCC) patients. METHOD: US imaging has been extensively validated in various subset of critically ill patients, but not specifically in the NCC population. We reviewed the clinical applications of US imaging for heart, vascular, brain, and lung evaluation and for possible procedural uses in NCC patients. Major neurosurgical books, journals, testimonials, authors' personal experience, and scientific databases were analyzed. RESULTS: Cardiac US imaging provides accurate information at NCC arrival to stratify risk factors, including presence of atrial septal defect/patent formen ovale, abnormal ventricular function, or pericardial effusion, and to monitor cardiac anatomy and function during the NCC stay for guiding goal-directed therapy. Vascular US in NCC patients has three especially relevant indications: to screen anatomy and flow in extracranial supra-aortic arteries, to diagnose deep vein thrombosis, and to optimize the safety of central venous catheterization. Brain US has important clinical applications in the NCC, including transcranial Doppler and emerging techniques for cerebral blood flow evaluation with contrast-enhanced US imaging. Lung US, as demonstrated in other intensive care unit patients, provides accurate diagnosis of anatomical and functional abnormalities and enables diagnosis of pleural effusion, pneumothorax, lung consolidation, pulmonary abscess and interstitial-alveolar syndrome, and lung recruitment/derecruitment. US imaging can effectively guide percutaneous tracheostomy. CONCLUSION: In conclusion, US imaging is an important diagnostic tool that provides real-time information at the bedside to stratify risk, monitor for complications, and guide invasive procedures in NCC patients.


Subject(s)
Brain Diseases/diagnostic imaging , Critical Care/methods , Heart Diseases/diagnostic imaging , Lung Diseases/diagnostic imaging , Neuroimaging , Vascular Diseases/diagnostic imaging , Humans , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL
...