Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Learn Mem ; 31(5)2024 May.
Article in English | MEDLINE | ID: mdl-38862177

ABSTRACT

Associative learning enables the adaptive adjustment of behavioral decisions based on acquired, predicted outcomes. The valence of what is learned is influenced not only by the learned stimuli and their temporal relations, but also by prior experiences and internal states. In this study, we used the fruit fly Drosophila melanogaster to demonstrate that neuronal circuits involved in associative olfactory learning undergo restructuring during extended periods of low-caloric food intake. Specifically, we observed a decrease in the connections between specific dopaminergic neurons (DANs) and Kenyon cells at distinct compartments of the mushroom body. This structural synaptic plasticity was contingent upon the presence of allatostatin A receptors in specific DANs and could be mimicked optogenetically by expressing a light-activated adenylate cyclase in exactly these DANs. Importantly, we found that this rearrangement in synaptic connections influenced aversive, punishment-induced olfactory learning but did not impact appetitive, reward-based learning. Whether induced by prolonged low-caloric conditions or optogenetic manipulation of cAMP levels, this synaptic rearrangement resulted in a reduction of aversive associative learning. Consequently, the balance between positive and negative reinforcing signals shifted, diminishing the ability to learn to avoid odor cues signaling negative outcomes. These results exemplify how a neuronal circuit required for learning and memory undergoes structural plasticity dependent on prior experiences of the nutritional value of food.


Subject(s)
Drosophila melanogaster , Mushroom Bodies , Neuronal Plasticity , Animals , Mushroom Bodies/physiology , Mushroom Bodies/metabolism , Drosophila melanogaster/physiology , Neuronal Plasticity/physiology , Dopaminergic Neurons/physiology , Dopaminergic Neurons/metabolism , Eating/physiology , Optogenetics , Association Learning/physiology , Smell/physiology , Olfactory Perception/physiology , Reward , Animals, Genetically Modified
2.
Front Physiol ; 15: 1363943, 2024.
Article in English | MEDLINE | ID: mdl-38550256

ABSTRACT

Neonicotinoid insecticides, the fastest-growing class in recent decades, interfere with cholinergic neurotransmission by binding to the nicotinic acetylcholine receptor. This disruption affects both targeted and non-targeted insects, impairing cognitive functions such as olfaction and related behaviors, with a particular emphasis on olfactory memory due to its ecological impact. Despite the persistent presence of these chemicals in the environment, significant research gaps remain in understanding the intricate interplay between cognitive function, development, neuronal activity, and neonicotinoid-induced toxicity. This study focuses on the fruit fly Drosophila melanogaster, chosen for its genetic tractability, well-characterized neural circuitry, and remarkable parallels with bees in neurotransmitter systems and brain structures. Our aim is to establish the fruit fly as a valuable model organism for studying the effects of neonicotinoids on behavior and neuronal circuitry, with particular attention to olfactory memory and associated brain circuitries. To achieve this aim, we conducted experiments to investigate the effects of short-term exposure to sublethal doses of the neonicotinoid imidacloprid, mimicking realistic environmental insecticide exposure, on the formation of odor memories. Additionally, we evaluated synaptic contacts and cholinergic neurotransmission within the mushroom body, the primary memory network of insects. Our results showed significant impairments in odor memory formation in flies exposed to imidacloprid, with exposure during the adult stage showing more pronounced effects than exposure during the larval stage. Additionally, functional studies revealed a decrease in synaptic contacts within the intrinsic olfactory projection neurons and the mushroom body. Furthermore, another experiment showed an odor-dependent reduction in cholinergic neurotransmission within this network. In summary, employing Drosophila as a model organism provides a robust framework for investigating neonicotinoid effects and understanding their diverse impacts on insect physiology and behavior. Our study initiates the establishment of the fruit fly as a pivotal model for exploring neonicotinoid influences, shedding light on their effects on olfactory memory, neuronal integrity, and synaptic transmission.

3.
Sci Rep ; 12(1): 10421, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35729203

ABSTRACT

By learning, through experience, which stimuli coincide with dangers, it is possible to predict outcomes and act pre-emptively to ensure survival. In insects, this process is localized to the mushroom body (MB), the circuitry of which facilitates the coincident detection of sensory stimuli and punishing or rewarding cues and, downstream, the execution of appropriate learned behaviors. Here, we focused our attention on the mushroom body output neurons (MBONs) of the γ-lobes that act as downstream synaptic partners of the MB γ-Kenyon cells (KCs) to ask how the output of the MB γ-lobe is shaped by olfactory associative conditioning, distinguishing this from non-associative stimulus exposure effects, and without the influence of downstream modulation. This was achieved by employing a subcellularly localized calcium sensor to specifically monitor activity at MBON postsynaptic sites. Therein, we identified a robust associative modulation within only one MBON postsynaptic compartment (MBON-γ1pedc > α/ß), which displayed a suppressed postsynaptic response to an aversively paired odor. While this MBON did not undergo non-associative modulation, the reverse was true across the remainder of the γ-lobe, where general odor-evoked adaptation was observed, but no conditioned odor-specific modulation. In conclusion, associative synaptic plasticity underlying aversive olfactory learning is localized to one distinct synaptic γKC-to-γMBON connection.


Subject(s)
Drosophila , Mushroom Bodies , Animals , Drosophila/physiology , Drosophila melanogaster/physiology , Learning , Mushroom Bodies/physiology , Neuronal Plasticity , Neurons/physiology , Odorants , Smell/physiology
4.
Elife ; 102021 12 29.
Article in English | MEDLINE | ID: mdl-34964714

ABSTRACT

To identify and memorize discrete but similar environmental inputs, the brain needs to distinguish between subtle differences of activity patterns in defined neuronal populations. The Kenyon cells (KCs) of the Drosophila adult mushroom body (MB) respond sparsely to complex olfactory input, a property that is thought to support stimuli discrimination in the MB. To understand how this property emerges, we investigated the role of the inhibitory anterior paired lateral (APL) neuron in the input circuit of the MB, the calyx. Within the calyx, presynaptic boutons of projection neurons (PNs) form large synaptic microglomeruli (MGs) with dendrites of postsynaptic KCs. Combining electron microscopy (EM) data analysis and in vivo calcium imaging, we show that APL, via inhibitory and reciprocal synapses targeting both PN boutons and KC dendrites, normalizes odour-evoked representations in MGs of the calyx. APL response scales with the PN input strength and is regionalized around PN input distribution. Our data indicate that the formation of a sparse code by the KCs requires APL-driven normalization of their MG postsynaptic responses. This work provides experimental insights on how inhibition shapes sensory information representation in a higher brain centre, thereby supporting stimuli discrimination and allowing for efficient associative memory formation.


Subject(s)
Drosophila melanogaster/physiology , Mushroom Bodies/physiology , Neurons/ultrastructure , Smell/physiology , Animals , Calcium/analysis , Female , Male , Microscopy, Confocal , Microscopy, Electron , Mushroom Bodies/ultrastructure , Neurons/physiology , Presynaptic Terminals
5.
Int J Mol Sci ; 19(1)2018 Jan 11.
Article in English | MEDLINE | ID: mdl-29324661

ABSTRACT

Fungi possess diverse photosensory proteins that allow them to perceive different light wavelengths and to adapt to changing light conditions in their environment. The biological and physiological roles of the green light-sensing rhodopsins in fungi are not yet resolved. The rice plant pathogen Fusarium fujikuroi exhibits two different rhodopsins, CarO and OpsA. CarO was previously characterized as a light-driven proton pump. We further analyzed the pumping behavior of CarO by patch-clamp experiments. Our data show that CarO pumping activity is strongly augmented in the presence of the plant hormone indole-3-acetic acid and in sodium acetate, in a dose-dependent manner under slightly acidic conditions. By contrast, under these and other tested conditions, the Neurospora rhodopsin (NR)-like rhodopsin OpsA did not exhibit any pump activity. Basic local alignment search tool (BLAST) searches in the genomes of ascomycetes revealed the occurrence of rhodopsin-encoding genes mainly in phyto-associated or phytopathogenic fungi, suggesting a possible correlation of the presence of rhodopsins with fungal ecology. In accordance, rice plants infected with a CarO-deficient F. fujikuroi strain showed more severe bakanae symptoms than the reference strain, indicating a potential role of the CarO rhodopsin in the regulation of plant infection by this fungus.


Subject(s)
Fungal Proteins/metabolism , Fusarium/metabolism , Host-Pathogen Interactions , Proton Pumps/metabolism , Rhodopsin/metabolism , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fusarium/genetics , Fusarium/pathogenicity , Indoleacetic Acids/pharmacology , Neurospora/genetics , Neurospora/metabolism , Oryza/microbiology , Proton Pumps/chemistry , Proton Pumps/genetics , Rhodopsin/chemistry , Rhodopsin/genetics , Sequence Homology , Sodium Acetate/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...