Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Oncogene ; 25(20): 2890-900, 2006 May 11.
Article in English | MEDLINE | ID: mdl-16407844

ABSTRACT

The balance between hematopoietic progenitor commitment and self-renewal versus differentiation is controlled by various transcriptional regulators cooperating with cytokine receptors. Disruption of this balance is increasingly recognized as important in the development of leukemia, by causing enhanced renewal and differentiation arrest. We studied regulation of renewal versus differentiation in primary murine erythroid progenitors that require cooperation of erythropoietin receptor (EpoR), the receptor tyrosine kinase c-Kit and a transcriptional regulator (glucocorticoid receptor; GR) for sustained renewal. However, mice defective for GR- (GR(dim/dim)), EpoR- (EpoR(H)) or STAT5ab function (Stat5ab(-/-)) show no severe erythropoiesis defects in vivo. Using primary erythroblast cultures from these mutants, we present genetic evidence that functional GR, EpoR, and Stat5 are essential for erythroblast renewal in vitro. Cells from GR(dim/dim), EpoR(H), and Stat5ab(-/-) mice showed enhanced differentiation instead of renewal, causing accumulation of mature cells and gradual proliferation arrest. Stat5ab was additionally required for Epo-induced terminal differentiation: differentiating Stat5ab(-/-) erythroblasts underwent apoptosis instead of erythrocyte maturation, due to absent induction of the antiapoptotic protein Bcl-X(L). This defect could be fully rescued by exogenous Bcl-X(L). These data suggest that signaling molecules driving leukemic proliferation may also be essential for prolonged self-renewal of normal erythroid progenitors.


Subject(s)
Cell Differentiation , Cell Proliferation , Erythroid Precursor Cells/metabolism , Receptors, Erythropoietin/physiology , Receptors, Glucocorticoid/physiology , STAT5 Transcription Factor/physiology , Animals , Apoptosis , Blotting, Western , Cells, Cultured , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Erythroblasts/cytology , Erythroblasts/metabolism , Flow Cytometry , Humans , Liver/cytology , Liver/metabolism , Mice , bcl-X Protein/genetics , bcl-X Protein/metabolism
2.
Oncogene ; 20(28): 3651-64, 2001 Jun 21.
Article in English | MEDLINE | ID: mdl-11439328

ABSTRACT

Primary erythroid progenitors can be expanded by the synergistic action of erythropoietin (Epo), stem cell factor (SCF) and glucocorticoids. While Epo is required for erythropoiesis in general, glucocorticoids and SCF mainly contribute to stress erythropoiesis in hypoxic mice. This ability of normal erythroid progenitors to undergo expansion under stress conditions is targeted by the avian erythroblastosis virus (AEV), harboring the oncogenes v-ErbB and v-ErbA. We investigated the signaling pathways required for progenitor expansion under stress conditions and in leukemic transformation. Immortal strains of erythroid progenitors, able to undergo normal, terminal differentiation under appropriate conditions, were established from fetal livers of p53-/- mice. Expression and activation of the EGF-receptor (HER-1/c-ErbB) or its mutated oncogenic version (v-ErbB) in these cells abrogated the requirement for Epo and SCF in expansion of these progenitors and blocked terminal differentiation. Upon inhibition of ErbB function, differentiation into erythrocytes occurred. Signal transducing molecules important for renewal induction, i.e. Stat5- and phosphoinositide 3-kinase (PI3K), are utilized by both EpoR/c-Kit and v/c-ErbB. However, while v-ErbB transformed cells and normal progenitors depended on PI3K signaling for renewal, c-ErbB also induces progenitor expansion by PI3K-independent mechanisms.


Subject(s)
Cell Transformation, Neoplastic , ErbB Receptors/metabolism , Erythroid Precursor Cells/pathology , Erythropoiesis , Leukemia/pathology , Oncogene Proteins v-erbB/metabolism , Proto-Oncogene Proteins c-kit/metabolism , Receptors, Erythropoietin/metabolism , Animals , Cell Division , Cells, Cultured , Enzyme Activation , ErbB Receptors/genetics , Erythroblasts/cytology , Erythroid Precursor Cells/cytology , Humans , Mice , Mice, Knockout , Oncogene Proteins v-erbB/genetics , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Stress, Physiological , Tumor Suppressor Protein p53/genetics
4.
Biochem Biophys Res Commun ; 275(2): 292-4, 2000 Aug 28.
Article in English | MEDLINE | ID: mdl-10964660

ABSTRACT

In general, translation efficiency of ferritin mRNAs is modulated by variations in iron supply. In primary avian erythroblasts undergoing short-term proliferation, however, ferritin heavy chain (ferH) mRNA is repressed at all iron levels. Yet, expression of v-ErbA oncoprotein is sufficient to reinduce ferH mRNA utilization at physiological iron concentrations. Since overexpression of the receptor tyrosine kinase c-Kit and erythropoietin receptor (EpoR) stimulates long-term proliferation of primary erythroblasts like v-ErbA, we analyzed the impact of cooperation between c-Kit and EpoR on the regulation of iron storage. Whereas endogenous c-Kit in combination with exogenous EpoR had no significant effect, ectopic overexpression of both receptors abolished translational repression of ferH mRNA upon iron administration. Thus, high-intensity signaling through c-Kit plus EpoR pathways mimics the v-ErbA-mediated regulatory phenotype.


Subject(s)
Erythroblasts/metabolism , Ferritins/genetics , Oncogene Proteins v-erbA/metabolism , Protein Biosynthesis , Proto-Oncogene Proteins c-kit/pharmacology , RNA, Messenger/genetics , Receptors, Erythropoietin/metabolism , Signal Transduction , Animals , Cells, Cultured , Chickens , Erythroblasts/drug effects
5.
Pathol Biol (Paris) ; 48(3): 211-26, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10858955

ABSTRACT

Studies using genetically modified mice and ex vivo tissue culture of erythroid progenitors converge to show that generation of mature erythroid cells depends on the interplay between specific transcriptional regulators and intracellular signals controlled by cytokines and growth factors. These studies also show that terminal differentiation in the erythroid lineage is unusual since the acquisition of the phenotypic traits of mature cells occurs while the cells are still actively dividing. Furthermore, under specific stress conditions, a massive and sustained self-renewal of committed erythroid progenitors can take place to replenish the pool of terminally differentiated cells. We review here how the erythroid genetic program and its interplay with specific cytokines, growth factors and hormones controls survival, proliferation and differentiation of erythroid progenitors both in normal and stress conditions. Special emphasis is laid on our present understanding of the differences in cell cycle control, which result either in self-renewal of erythroid progenitors or in the particular cell divisions which accompany terminal differentiation. Finally, we discuss how deregulation of the various aspects of the physiological control of erythroid progenitor survival, proliferation and differentiation can lead to erythroblast transformation and erythroleukemia.


Subject(s)
Cell Cycle/physiology , Cell Transformation, Neoplastic , Erythroid Precursor Cells/physiology , Leukemia, Erythroblastic, Acute , Oncogenes , Signal Transduction , Animals , Apoptosis , Cell Differentiation , Genetic Techniques , Humans , Mice
6.
Biol Chem ; 380(2): 187-202, 1999 Feb.
Article in English | MEDLINE | ID: mdl-10195426

ABSTRACT

Red blood cells are of vital importance for oxygen transport in vertebrates. Thus, their formation during development and homeostasis requires tight control of both progenitor proliferation and terminal red cell differentiation. Self renewal (i.e. long-term proliferation without differentiation) of committed erythroid progenitors has recently been shown to contribute to this regulation. Avian erythroid progenitors expressing the EGF receptor/c-ErbB (SCF/TGFalpha progenitors) can be induced to long-term proliferation by the c-ErbB ligand transforming growth factor alpha and the steroids estradiol and dexamethasone. These progenitors have not yet been described in mammals and their factor requirements are untypical for adult erythroid progenitors. Here we describe a second, distinct type of erythroid progenitor (EpoR progenitors) which can be established from freshly isolated bone marrow and is induced to self renew by ligands relevant for erythropoiesis, i.e. erythropoietin, stem cell factor, the ligand for c-Kit and the glucocorticoid receptor ligand dexamethasone. Limiting dilution cloning indicates that these EpoR progenitors are derived from normal BFU-E/CFU-E. For a detailed study, mEpoR progenitors were generated by retroviral expression of the murine Epo receptor in bone marrow erythroblasts. These progenitors carry out the normal erythroid differentiation program in recombinant differentiation factors only. We show that mEpoR progenitors are more mature than SCF/TGFalpha progenitors and also do no longer respond to transforming growth factor alpha and estradiol. In contrast they are now highly sensitive to low levels of thyroid hormone, facilitating their terminal maturation into erythrocytes.


Subject(s)
Erythroid Precursor Cells/metabolism , Proto-Oncogene Proteins c-kit/metabolism , Receptors, Erythropoietin/metabolism , Animals , Cell Differentiation , Cell Division , Erythroid Precursor Cells/cytology , Erythropoietin/metabolism , Hormones/metabolism , Mice , Stem Cell Factor/metabolism , Steroids/metabolism , Transforming Growth Factor alpha/metabolism , Tretinoin/metabolism
7.
J Cell Biol ; 141(4): 1041-51, 1998 May 18.
Article in English | MEDLINE | ID: mdl-9585421

ABSTRACT

The cytokine Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) regulates proliferation, differentiation, and apoptosis during myelopoiesis and erythropoiesis. Structure-function relationships of GM-CSF interactions with its receptor (GM-R), the biochemistry of GM-R signal transduction, and GM-CSF action in vivo are relatively well understood. Much less is known, however, about GM-R function in primary hematopoietic cells. In this paper we show that expression of the human GM-R in a heterologous cell system (primary avian erythroid and myeloid cells) confirms respective results in murine or human cell lines, but also provides new insights how the GM-R regulates progenitor proliferation and differentiation. As expected, the hGM-CSF stimulated myeloid progenitor proliferation and differentiation and enhanced erythroid progenitor proliferation during terminal differentiation. In the latter cells, however, the hGM-R only partially substituted for the activities of the erythropoietin receptor (EpoR). It failed to replace the EpoR in its cooperation with c-Kit to induce long-term proliferation of erythroid progenitors. Furthermore, the hGM-R alpha chain specifically interfered with EpoR signaling, an activity neither seen for the betac subunit of the receptor complex alone, nor for the alpha chain of the closely related Interleukin-3 receptor. These results point to a novel role of the GM-R alpha chain in defining cell type-specific functions of the GM-R.


Subject(s)
Erythroblasts/cytology , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Hematopoietic Stem Cells/cytology , Macrophages/cytology , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/physiology , Animals , Cell Differentiation/drug effects , Cell Division/drug effects , Cell Line, Transformed , Cells, Cultured , Chick Embryo , Erythroblasts/drug effects , Erythroblasts/physiology , Erythropoietin/pharmacology , Fibroblasts , Genetic Vectors , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/physiology , Hemoglobins/biosynthesis , Humans , Kinetics , Macrophages/drug effects , Mammals , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/biosynthesis , Recombinant Proteins/biosynthesis , Recombinant Proteins/pharmacology , Retroviridae , Signal Transduction , Transfection
8.
DNA Cell Biol ; 16(7): 849-59, 1997 Jul.
Article in English | MEDLINE | ID: mdl-9260928

ABSTRACT

Studies on the molecular properties of cell cycle regulators in animal cells require cell preparations highly enriched in particular cell cycle phases. Centrifugal elutriation is frequently used to synchronize cells because this technique was thought to cause only minimal distortions in protein expression or metabolic functions. However, in primary chicken erythroblasts, we consistently observed artefacts in mitotic cyclin mRNA expression and p70 S6 kinase activity, which were clearly caused by the elutriation procedure. Therefore, we modified the standard protocol by reseeding various elutriated fractions into preconditioned medium, a process termed recultivation, and harvesting after an appropriate amount of time. This avoided the pleiotropic effects caused by stress and lack of growth factor supply during elutriation. Using this recultivation procedure, highly synchronous progression starting from any given cell cycle phase could be achieved for a variety of cell types, including primary, factor-dependent cells of hematopoietic origin. Mitotic cyclin expression and S6 kinase activity was found to be normal again in recultivated cultures, as opposed to elutriated ones. Finally, monitoring of mitosis-specific cyclin A degradation in recultivated G2 phase cells showed that recultivation provided an excellent tool to follow cells through M phase into G1 without the requirement for a chemical cell cycle block.


Subject(s)
Cell Culture Techniques/methods , Cell Cycle , Centrifugation/methods , Cyclin B , Erythroid Precursor Cells/cytology , Animals , Cell Line , Cells, Cultured , Chickens , Culture Media, Conditioned , Cyclins/genetics , Erythroid Precursor Cells/enzymology , Fibroblasts , G2 Phase/physiology , Mice , Mitosis , Protein Serine-Threonine Kinases/metabolism , RNA, Messenger/analysis , RNA, Messenger/metabolism , Ribosomal Protein S6 Kinases
9.
EMBO J ; 16(2): 267-80, 1997 Jan 15.
Article in English | MEDLINE | ID: mdl-9029148

ABSTRACT

During development and in regenerating tissues such as the bone marrow, progenitor cells constantly need to make decisions between proliferation and differentiation. We have used a model system, normal erythroid progenitors of the chicken, to determine the molecular players involved in making this decision. The molecules identified comprised receptor tyrosine kinases (c-Kit and c-ErbB) and members of the nuclear hormone receptor superfamily (thyroid hormone receptor and estrogen receptor). Here we identify the glucocorticoid receptor (GR) as a key regulator of erythroid progenitor self-renewal (i.e. continuous proliferation in the absence of differentiation). In media lacking a GR ligand or containing a GR antagonist, erythroid progenitors failed to self-renew, even if c-Kit, c-ErbB and the estrogen receptor were activated simultaneously. To induce self-renewal, the GR required the continuous presence of an activated receptor tyrosine kinase and had to cooperate with the estrogen receptor for full activity. Mutant analysis showed that DNA binding and a functional AF-2 transactivation domain are required for proliferation stimulation and differentiation arrest. c-myb was identified as a potential target gene of the GR in erythroblasts. It could be demonstrated that delta c-Myb, an activated c-Myb protein, can functionally replace the GR.


Subject(s)
Erythroid Precursor Cells/cytology , Receptors, Glucocorticoid/physiology , Animals , Blotting, Northern , Cell Differentiation , Cell Division , Chick Embryo , Chickens , DNA Mutational Analysis , DNA-Binding Proteins/physiology , Dexamethasone/metabolism , ErbB Receptors/physiology , Furylfuramide/metabolism , Kinetics , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins/physiology , Proto-Oncogene Proteins c-myb , Receptors, Estrogen/physiology , Stem Cell Factor/physiology , Trans-Activators/physiology
10.
Oncogene ; 11(1): 59-72, 1995 Jul 06.
Article in English | MEDLINE | ID: mdl-7624132

ABSTRACT

Understanding how self renewal, commitment and differentiation are regulated in normal, multipotent hematopoietic progenitors is important for our understanding of underlying mechanisms involved in leukemogenesis. In addition, knowledge of progenitor cell biology is critical if these cells are to be used for gene therapy. In this communication, we demonstrate that the oncogenic transcription factor v-Ski, together with the ligand activated receptor tyrosine kinase c-Kit, induces the continuous in vitro self renewal of primary avian multipotent progenitors. These cells have an in vitro life span of > 100 generations. In addition they spontaneously differentiate into cells of the erythroid, monocytic and granulocytic lineages. If clonal strains of these multipotent progenitors are exposed to specific mixtures of growth factors and hormones, they develop into committed cells of either the erythroid or myeloid lineages. These committed cells underwent efficient terminal differentiation when they were treated with the relevant lineage-specific growth/differentiation factors, but underwent apoptosis when exposed to the incorrect factors for the respective lineage. While the committed cells coexpress marker proteins from different lineages, expression of the 'wrong' lineage marker is repressed during terminal differentiation. Our results indicate that a combination of v-Ski and activated c-Kit induces long-term self renewal in primary multipotent progenitors, which can be induced to commit and differentiate along specific lineages under different, defined conditions. Our data also suggest that growth factors and steroid hormones control terminal differentiation by a combined induction of commitment, growth and apoptosis, a process likely to be affected in stem cell leukemias.


Subject(s)
Hematopoietic Stem Cells/cytology , Retroviridae Proteins, Oncogenic/physiology , Transcription Factors , Cell Division/physiology , Cell Line, Transformed , Cell Nucleus/metabolism , Hematopoiesis/physiology , Humans
11.
Curr Biol ; 5(2): 191-204, 1995 Feb 01.
Article in English | MEDLINE | ID: mdl-7538024

ABSTRACT

BACKGROUND: Self renewal in the hematopoietic system is thought to be restricted to a class of pluripotent stem cells. The capacity of cells with the properties of committed progenitors to self renew in many leukemias is thought to be an abnormal property resulting from the mutations responsible for leukemic transformation. It is not known how cells that can self-renew differ from cells that cannot. The notion that only pluripotent stem cells self renew has recently been challenged: normal committed erythroid progenitors capable of sustained self renewal have been described. These cells, called SCF/TGF alpha progenitors, co-express the c-Kit receptor tyrosine kinase and c-ErbB, the avian receptor for epidermal growth factor and transforming growth factor (TGF) alpha, and they undergo continuous self renewal in response to TGF alpha and estradiol. In contrast, common erythroid progenitors (termed SCF progenitors) express only c-Kit and undergo a limited number of cell divisions in response to the c-Kit ligand, stem cell factor (SCF). Both types of progenitor faithfully reproduce terminal erythroid differentiation in vitro when exposed to differentiation factors. Here, we have investigated the developmental origin of these two classes of self-renewing erythroid progenitors. RESULTS: We show that SCF progenitors can develop into SCF/TGF alpha progenitors. This developmental conversion requires 10-14 days and is accompanied by a gradual up-regulation of bioactive TGF alpha receptor. Using sera depleted of endogenous growth factors, we demonstrate that the development of SCF progenitors into SCF/TGF alpha progenitors absolutely requires the simultaneous presence of SCF, TGF alpha and estradiol, and is strongly enhanced by an unknown activity in chicken serum. CONCLUSIONS: SCF progenitors can be induced to develop into self-renewing SCF/TGF alpha progenitors. The development of self renewal is triggered by specific combinations of growth factors and hormones. This has important implications for understanding leukemogenesis, as the self renewal of leukemic cells may reflect the normal potential of certain committed progenitor cells and not, as has been thought, a unique abnormal property of leukemic cells.


Subject(s)
Erythroid Precursor Cells/cytology , Hematopoiesis , Receptor Protein-Tyrosine Kinases/metabolism , Receptors, Steroid/metabolism , Animals , Cells, Cultured , Chickens , Clone Cells , Enzyme Activation , ErbB Receptors/metabolism , Erythroid Precursor Cells/metabolism , Estradiol/metabolism , Hematopoietic Cell Growth Factors/metabolism , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-kit , Receptors, Colony-Stimulating Factor/metabolism , Stem Cell Factor , Transforming Growth Factor alpha/metabolism
12.
Cell ; 71(7): 1103-16, 1992 Dec 24.
Article in English | MEDLINE | ID: mdl-1473147

ABSTRACT

As a novel approach to studying the modulation of the polarized epithelial phenotype, we have expressed c-Fos and c-Myc estrogen receptor fusion proteins (c-FosER and c-MycER) in mammary epithelial cells. The hybrid proteins could be activated by estrogen for defined time periods and after the cells had achieved their fully polarized organization. Activation of c-MycER deregulated proliferation but did not affect epithelial polarity. Short-term activation of c-FosER induced the reversible loss of morphological and functional cell polarity. In contrast, long-term stimulation of c-FosER caused the cells to depolarize irreversibly, to invade collagen gels, and to undergo epithelial-fibroblastoid cell conversion. Our data suggest that Fos proteins are important in modulating the epithelial phenotype both in normal tissue development and in invasive processes.


Subject(s)
Cell Polarity , Proto-Oncogene Proteins c-fos/biosynthesis , Receptors, Estrogen/biosynthesis , Recombinant Fusion Proteins/biosynthesis , Animals , Cell Differentiation/drug effects , Cell Division/drug effects , Cell Line , Cell Polarity/drug effects , Epithelial Cells , Estrogens/pharmacology , Fibroblasts/cytology , Mammary Glands, Animal/cytology , Mice , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...