Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Gynecol Oncol ; 165(3): 568-576, 2022 06.
Article in English | MEDLINE | ID: mdl-35370009

ABSTRACT

OBJECTIVE: Aberrant DNA methylation is an early event in carcinogenesis which could be leveraged to detect ovarian cancer (OC) in plasma. METHODS: DNA from frozen OC tissues, benign fallopian tube epithelium (FTE), and buffy coats from cancer-free women underwent reduced representation bisulfite sequencing (RRBS) to identify OC MDMs. Candidate MDM selection was based on receiver operating characteristic (ROC) discrimination, methylation fold change, and low background methylation among controls. Blinded biological validation was performed using methylated specific PCR on DNA extracted from independent OC and FTE FFPE tissues. MDMs were tested using Target Enrichment Long-probe Quantitative Amplified Signal (TELQAS) assays in pre-treatment plasma from women newly diagnosed with OC and population-sampled healthy women. A random forest modeling analysis was performed to generate predictive probability of disease; results were 500-fold in silico cross-validated. RESULTS: Thirty-three MDMs showed marked methylation fold changes (10 to >1000) across all OC subtypes vs FTE. Eleven MDMs (GPRIN1, CDO1, SRC, SIM2, AGRN, FAIM2, CELF2, RIPPLY3, GYPC, CAPN2, BCAT1) were tested on plasma from 91 women with OC (73 (80%) high-grade serous (HGS)) and 91 without OC; the cross-validated 11-MDM panel highly discriminated OC from controls (96% (95% CI, 89-99%) specificity; 79% (69-87%) sensitivity, and AUC 0.91 (0.86-0.96)). Among the 5 stage I/II HGS OCs included, all were correctly identified. CONCLUSIONS: Whole methylome sequencing, stringent filtering criteria, and biological validation yielded candidate MDMs for OC that performed with high sensitivity and specificity in plasma. Larger plasma-based OC MDM studies, including testing of pre-diagnostic specimens, are warranted.


Subject(s)
DNA Methylation , Ovarian Neoplasms , Biomarkers, Tumor/genetics , CELF Proteins/genetics , Carcinoma, Ovarian Epithelial/diagnosis , Carcinoma, Ovarian Epithelial/genetics , Feasibility Studies , Female , Genetic Markers , Humans , Nerve Tissue Proteins/genetics , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/genetics , Transaminases/genetics
2.
Front Genet ; 11: 11, 2020.
Article in English | MEDLINE | ID: mdl-32117434

ABSTRACT

Disease has large negative impacts on poultry production. A more comprehensive understanding of host-pathogen interaction can lead to new and improved strategies to maintain health. In particular, host genetic factors can lead to a more effective response to pathogens, hereafter termed resistance. Fayoumi and Leghorn chicken lines have demonstrated relative resistance and susceptibility, respectively, to the Newcastle disease virus (NDV) vaccine strain and many other pathogens. This biological model was used to better understand the host response to a vaccine strain of NDV across three tissues and time points, using RNA-seq. Analyzing the Harderian gland, trachea, and lung tissues together using weighted gene co-expression network analysis (WGCNA) identified important genes that were co-expressed and associated with parameters including: genetic line, days post-infection (dpi), challenge status, sex, and tissue. Pathways and driver genes, such as EIF2AK2, MPEG1, and TNFSF13B, associated with challenge status, dpi, and genetic line were of particular interest as candidates for disease resistance. Overall, by jointly analyzing the three tissues, this study identified genes and gene networks that led to a more comprehensive understanding of the whole animal response to lentogenic NDV than that obtained by analyzing the tissues individually.

3.
Sci Rep ; 9(1): 7209, 2019 05 10.
Article in English | MEDLINE | ID: mdl-31076577

ABSTRACT

Newcastle disease virus (NDV) is a threat to the global poultry industry, but particularly for smallholder farmers in low- and middle-income countries. Previous reports suggest that some breeds of chickens are less susceptible to NDV infection, however, the mechanisms contributing to this are unknown. We here examined the comparative transcriptional responses of innate immune genes to NDV infection in inbred sublines of the Fayoumi and Leghorn breeds known to differ in their relative susceptibility to infection as well as at the microchromosome bearing the major histocompatability complex (MHC) locus. The analysis identified a set of five core genes, Mx1, IRF1, IRF7, STAT1, and SOCS1, that are up-regulated regardless of subline. Several genes were differentially expressed in a breed- or subline-dependent manner. The breed-dependent response involved TLR3, NOS2, LITAF, and IFIH1 in the Fayoumi versus IL8, CAMP, and CCL4 in the Leghorn. Further analysis identified subline-dependent differences in the pro-inflammatory response within the Fayoumi breed that are likely influenced by the MHC. These results have identified conserved, breed-dependent, and subline-dependent innate immune responses to NDV infection in chickens, and provide a strong framework for the future characterization of the specific roles of genes and pathways that influence the susceptibility of chickens to NDV infection.


Subject(s)
Immunity, Innate , Newcastle Disease/genetics , Newcastle disease virus/immunology , Poultry Diseases/virology , Animals , Chick Embryo , Disease Resistance , Gene Expression Regulation , Gene Regulatory Networks , Newcastle Disease/immunology , Poultry Diseases/genetics , Poultry Diseases/immunology , Selective Breeding , Up-Regulation
4.
Front Physiol ; 9: 492, 2018.
Article in English | MEDLINE | ID: mdl-29867543

ABSTRACT

The Harderian gland is a sparsely characterized immune tissue known to play an important role in local immunity. The function of the Harderian gland, however, is not clearly defined. Measuring the expression of all genes using RNA-seq enables the identification of genes, pathways, or networks of interest. Our relative RNA-seq expression analysis compared the chicken Harderian gland transcriptome to other important primary and secondary immune tissues including the bursa of Fabricius, thymus, and spleen of non-challenged birds. A total of 2,386 transcripts were identified as highly expressed in the Harderian gland. Gene set enrichment showed the importance of G-protein coupled receptor signaling and several immune pathways. Among the genes highly expressed in the Harderian gland were 48 miRNAs, a category of genetic elements involved in regulation of gene expression. Several identified miRNAs have immune related functions. This analysis gives insight to the unique immune processes inherent in the Harderian gland.

5.
Sci Rep ; 8(1): 6558, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29700338

ABSTRACT

Behind each eye of the chicken resides a unique lymph tissue, the Harderian gland, for which RNA sequencing (RNA-seq) analysis is novel. We characterized the response of this tissue to Newcastle disease virus (NDV) in two inbred lines with different susceptibility to NDV across three time points. Three-week-old relatively resistant (Fayoumi) and relatively susceptible (Leghorn) birds were inoculated with a high-titered (107EID50) La Sota strain of NDV via an oculonasal route. At 2, 6, and 10 days post infection (dpi) Harderian glands were collected and analyzed via RNA-seq. The Fayoumi had significantly more detectable viral transcripts in the Harderian gland at 2 dpi than the Leghorn, but cleared the virus by 6 dpi. At all three time points, few genes were declared differentially expressed (DE) between the challenged and nonchallenged birds, except for the Leghorns at 6 dpi, and these DE genes were predicted to activate an adaptive immune response. Relative to the Leghorn, the Fayoumi was predicted to activate more immune pathways in both challenged and nonchallenged birds suggesting a more elevated immune system in the Fayoumis under homeostatic conditions. Overall, this study helped characterize the function of this important tissue and its response to NDV.


Subject(s)
Chickens/genetics , Chickens/virology , Harderian Gland/metabolism , Harderian Gland/virology , Newcastle Disease/genetics , Newcastle Disease/virology , Newcastle disease virus , Transcriptome , Animals , Animals, Inbred Strains , Gene Expression Profiling , Gene Regulatory Networks , Host-Pathogen Interactions/genetics , Reproducibility of Results
6.
Front Genet ; 9: 61, 2018.
Article in English | MEDLINE | ID: mdl-29535762

ABSTRACT

Traditional approaches to assess the immune response of chickens to infection are through animal trials, which are expensive, require enhanced biosecurity, compromise welfare, and are frequently influenced by confounding variables. Since the chicken embryo becomes immunocompetent prior to hatch, we here characterized the transcriptional response of selected innate immune genes to Newcastle disease virus (NDV) infection in chicken embryos at days 10, 14, and 18 of embryonic development. The results suggest that the innate immune response 72 h after challenge of 18-day chicken embryo is both consistent and robust. The expression of CCL5, Mx1, and TLR3 in lung tissues of NDV challenged chicken embryos from the outbred Kuroiler and Tanzanian local ecotype lines showed that their expression was several orders of magnitude higher in the Kuroiler than in the local ecotypes. Next, the expression patterns of three additional innate-immunity related genes, IL-8, IRF-1, and STAT1, were examined in the highly congenic Fayoumi (M5.1 and M15.2) and Leghorn (Ghs6 and Ghs13) sublines that differ only at the microchromosome bearing the major histocompatibility locus. The results show that the Ghs13 Leghorn subline had a consistently higher expression of all genes except IL-8 and expression seemed to be subline-dependent rather than breed-dependent, suggesting that the innate immune response of chicken embryos to NDV infection may be genetically controlled by the MHC-locus. Taken together, the results suggest that the chicken embryo may represent a promising model to studying the patterns and sources of variation of the avian innate immune response to infection with NDV and related pathogens.

7.
Sci Rep ; 8(1): 1278, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29352240

ABSTRACT

Enhancing genetic resistance of chickens to Newcastle Disease Virus (NDV) provides a promising way to improve poultry health, and to alleviate poverty and food insecurity in developing countries. In this study, two inbred chicken lines with different responses to NDV, Fayoumi and Leghorn, were challenged with LaSota NDV strain at 21 days of age. Through transcriptome analysis, gene expression in spleen at 2 and 6 days post-inoculation was compared between NDV-infected and control groups, as well as between chicken lines. At a false discovery rate <0.05, Fayoumi chickens, which are relatively more resistant to NDV, showed fewer differentially expressed genes (DEGs) than Leghorn chickens. Several interferon-stimulated genes were identified as important DEGs regulating immune response to NDV in chicken. Pathways predicted by IPA analysis, such as "EIF-signaling", "actin cytoskeleton organization nitric oxide production" and "coagulation system" may contribute to resistance to NDV in Fayoumi chickens. The identified DEGs and predicted pathways may contribute to differential responses to NDV between the two chicken lines and provide potential targets for breeding chickens that are more resistant to NDV.


Subject(s)
Chickens/genetics , Newcastle Disease/genetics , Poultry Diseases/genetics , Transcriptome , Animals , Chickens/virology , Newcastle Disease/metabolism , Poultry Diseases/virology , Spleen/metabolism
8.
BMC Genomics ; 18(1): 989, 2017 12 28.
Article in English | MEDLINE | ID: mdl-29281979

ABSTRACT

BACKGROUND: Newcastle disease virus (NDV) is a threat to poultry production worldwide. A better understanding of mechanisms of resistance and susceptibility to this virus will improve measures for NDV prevention and control. Males and females from resistant Fayoumi and susceptible Leghorn lines were either challenged with a lentogenic strain of the virus or given a mock infection at 3 weeks of age. The lung transcriptomes generated by RNA-seq were studied using contrasts across the challenged and nonchallenged birds, the two lines, and three time points post-infection, and by using Weighted Gene Co-expression Network Analysis (WGNCA). RESULTS: Genetic line and sex had a large impact on the lung transcriptome. When contrasting the challenged and nonchallenged birds, few differentially expressed genes (DEG) were identified within each line at 2, 6, and 10 days post infection (dpi), except for the more resistant Fayoumi line at 10 dpi, for which several pathways were activated and inhibited at this time. The interaction of challenge and line at 10 dpi significantly impacted 131 genes (False Discovery Rate (FDR) <0.05), one of which was PPIB. Many DEG were identified between the Fayoumi and Leghorns. The number of DEG between the two lines in the challenged birds decreased over time, but increased over time in the nonchallenged birds. The nonchallenged Fayoumis at 10 dpi showed enrichment of immune type cells when compared to 2 dpi, suggesting important immune related development at this age. These changes between 10 and 2 dpi were not identified in the challenged Fayoumis. The energy allocated to host defense may have interrupted normal lung development. WGCNA identified important modules and driver genes within those modules that were associated with traits of interest, several of which had no known associated function. CONCLUSIONS: The lines' unique response to NDV offers insights into the potential means of their resistance and susceptibility. The lung transcriptome shows a unique response to lentogenic NDV compared to a previous study on the trachea of the same birds. It is important to analyze multiple tissues in order to best understand the chicken's overall response to NDV challenge and improve strategies to combat this devastating disease.


Subject(s)
Chickens/virology , Lung/metabolism , Newcastle Disease/genetics , Transcriptome , Animals , Chickens/genetics , Chickens/metabolism , Disease Resistance , Disease Susceptibility , Female , Gene Expression Profiling , Gene Regulatory Networks , Lung/virology , Male , Newcastle Disease/metabolism , Newcastle Disease/virology , Newcastle disease virus/isolation & purification , Principal Component Analysis , Sequence Analysis, RNA , Species Specificity
9.
Clin Vaccine Immunol ; 24(5)2017 May.
Article in English | MEDLINE | ID: mdl-28331077

ABSTRACT

Newcastle disease virus (NDV) has a devastating impact on poultry production in developing countries. This study examined the transcriptome of tracheal epithelial cells from two inbred chicken lines that differ in NDV susceptibility after challenge with a high-titer inoculum of lentogenic NDV. The Fayoumi line had a significantly lower NDV load postchallenge than the Leghorn line, demonstrating the Fayoumi line's classification as a relatively NDV-resistant breed. Examination of the trachea transcriptome showed a large increase in immune cell infiltration in the trachea in both lines at all times postinfection. The pathways conserved across lines and at all three time points postinfection included iCOS-iCOSL signaling in T helper cells, NF-κB signaling, the role of nuclear factor of activated T cells in the regulation of the immune response, calcium-induced T lymphocyte apoptosis, phospholipase C signaling, and CD28 signaling in T helper cells. Although shared pathways were seen in the Fayoumi and Leghorn lines, each line showed unique responses as well. The downregulation of collagen and the activation of eukaryotic translation initiation factor 2 signaling in the Fayoumis relative to the Leghorns at 2 days postinfection may contribute to the resistance phenotype seen in the Fayoumis. This study provides a further understanding of host-pathogen interactions which could improve vaccine efficacy and, in combination with genome-wide association studies, has the potential to advance strategies for breeding chickens with enhanced resistance to NDV.


Subject(s)
Chickens/immunology , Host-Pathogen Interactions/immunology , Newcastle Disease/virology , Poultry Diseases/virology , Animals , Chickens/genetics , Trachea/virology , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...