Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 26(16)2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34443661

ABSTRACT

Protein methyltransferases are vital to the epigenetic modification of gene expression. Thus, obtaining a better understanding of and control over the regulation of these crucial proteins has significant implications for the study and treatment of numerous diseases. One ideal mechanism of protein regulation is the specific installation of a photolabile-protecting group through the use of photocaged non-canonical amino acids. Consequently, PRMT1 was caged at a key tyrosine residue with a nitrobenzyl-protected Schultz amino acid to modulate protein function. Subsequent irradiation with UV light removes the caging group and restores normal methyltransferase activity, facilitating the spatial and temporal control of PRMT1 activity. Ultimately, this caged PRMT1 affords the ability to better understand the protein's mechanism of action and potentially regulate the epigenetic impacts of this vital protein.


Subject(s)
Epigenesis, Genetic/radiation effects , Protein Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/genetics , Repressor Proteins/genetics , Amino Acid Sequence/genetics , Amino Acids , Epigenesis, Genetic/genetics , Gene Expression/radiation effects , Humans , Methylation/radiation effects , Protein Methyltransferases/radiation effects , Protein-Arginine N-Methyltransferases/radiation effects , Repressor Proteins/radiation effects , Transcription Factors/genetics , Tyrosine/chemistry , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...