Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 13(11): e10728, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38020683

ABSTRACT

Economic and ecological consequences of invasive species make biological invasions an influential driver of global change. Monitoring the spread and impacts of non-native species is essential, but often difficult, especially during the initial stages of invasion. The Joro spider, Trichonephila clavata (L. Koch, 1878, Araneae: Nephilidae), is a large-bodied orb weaver native to Asia, likely introduced to northern Georgia, U.S. around 2010. We investigated the nascent invasion of T. clavata by constructing species distribution models (SDMs) from crowd-sourced data to compare the climate T. clavata experiences in its native range to its introduced range. We found evidence that the climate of T. clavata's native range differs significantly from its introduced range. Species distribution models trained with observations from its native range predict that the most suitable habitats in North America occur north of its current introduced range. Consistent with SDM predictions, T. clavata appears to be spreading faster to the north than to the south. Lastly, we conducted surveys to investigate potential ecological impacts of T. clavata on the diversity of native orb weaving spiders. Importantly, Trichonephila clavata was the most common and abundant species observed in the survey, and was numerically dominant at half of the sites it was present in. Our models also suggest that there is lower native orb weaver species richness and diversity closer to where T. clavata was initially found and where it has been established the longest, though human population density complicates this finding. This early study is the first to forecast how widely this spider may spread in its introduced range and explore its potential ecological impacts. Our results add evidence that T. clavata is an invasive species and deserves much more ecological scrutiny.

2.
Proc Biol Sci ; 290(1994): 20230153, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36883276

ABSTRACT

Artificial light at night (ALAN) is a globally widespread and expanding form of anthropogenic change that impacts arthropod biodiversity. ALAN alters interspecific interactions between arthropods, including predation and parasitism. Despite their ecological importance as prey and hosts, the impact of ALAN on larval arthropod stages, such as caterpillars, is poorly understood. We examined the hypothesis that ALAN increases top-down pressure on caterpillars from arthropod predators and parasitoids. We experimentally illuminated study plots with moderate levels (10-15 lux) of LED lighting at light-naive Hubbard Brook Experimental Forest, New Hampshire. We measured and compared between experimental and control plots: (i) predation on clay caterpillars, and (ii) abundance of arthropod predators and parasitoids. We found that predation rates on clay caterpillars and abundance of arthropod predators and parasitoids were significantly higher on ALAN treatment plots relative to control plots. These results suggest that moderate levels of ALAN increase top-down pressure on caterpillars. We did not test mechanisms, but sampling data indicates that increased abundance of predators near lights may play a role. This study highlights the importance of examining the effects of ALAN on both adult and larval life stages and suggests potential consequences of ALAN on arthropod populations and communities.


Subject(s)
Arthropods , Lepidoptera , Animals , Clay , Light Pollution , Biodiversity , Forests , Larva
SELECTION OF CITATIONS
SEARCH DETAIL
...