Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 52(24): 8204-8210, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37293872

ABSTRACT

The upcycling of waste into valuable chemicals has gained significant attention in recent years as a way to reduce waste and promote the circular economy. The transition to a circular economy that includes waste upcycling is crucial for addressing the global challenge of resource depletion and waste management. To that end, an Fe-based metal-organic framework material (Fe-BDC(W)) has been synthesized completely via the utilization of waste materials. The upcycling of rust gives the Fe salt, whilst the benzene dicarboxylic acid (BDC) linker has been derived from waste polyethylene terephthalate plastic bottles. Sustainable energy storage from waste materials seeks to produce environmentally benign and economically viable energy storage technologies. The prepared MOF has been deployed as an active material for a supercapacitor, which achieves a specific capacitance of 752 F g-1 at 4 A g-1, comparable with the MOF produced from commercially available chemicals, Fe-BDC(C).

2.
Inorg Chem ; 62(7): 3084-3094, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36758151

ABSTRACT

A cadmium-based metal-organic framework (Cd-MOF) is synthesized in a facile manner at ambient temperature by an easy slow diffusion process. The three-dimensional (3D) structure of Cd-MOF is authenticated by single-crystal X-ray diffraction studies and exhibits a cuboid-shaped morphology with an average edge length of ∼1.13 µm. The prepared Cd-MOF was found to be electroactive in nature, which resulted in a specific capacitance of 647 F g-1 at 4 A g-1 by maintaining a retention of ∼78% over 10,000 successive cycles in the absence of any binder. Further, to distinguish the efficiency of Cd-MOF electrodes, different electrolytes (NaOH, KOH, and LiOH) were explored, wherein NaOH revealed a higher capacitive response due to its combined effect of ionic and hydrated ionic radii. To investigate the practical applicability, an asymmetric supercapacitor (ASC) device is fabricated by employing Cd-MOF as the positive electrode and activated carbon (AC) as the negative electrode, enabling it to light a commercial light-emitting diode (LED) bulb (∼1.8 V). The as-fabricated ASC device delivers comparable energy density and power density.

3.
Chem Rec ; 22(9): e202200067, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35686889

ABSTRACT

Being cognizant of modern electronic devices, the scientists are continuing to investigate renewable green-energy resources for a decade. Amid different energy harvesting systems, the triboelectric nanogenerators (TENGs) have been found to be the most promising mechanical harvesting technology and have drawn attention to generate electrical energy. Thanks to its instant output power, choice to opt for wide-ranging materials, low maintenance cost, easy fabrication process and environmentally friendly nature. Due to numerous working modes of TENGs, it is dedicated to desired application at ambient conditions. In this review, an advance correlation of TENGs have been explained based on the variety of nanostructures, including 0D, 1D, 2D, 3D, metal organic frameworks (MOFs), coordination polymers (CPs), covalent organic frameworks (COFs), and perovskite materials. Moreover, an overview of previous and current perspectives of various nanomaterials, synthesis, fabrication and their applications in potential fields have been discussed in detail.

4.
Chemistry ; 27(55): 13669-13698, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34288163

ABSTRACT

Covalent-organic frameworks (COFs), being a new member of the crystalline porous materials family, have emerged as important materials for energy storage/conversion/generation devices. They possess high surface areas, ordered micro/mesopores, designable structures and an ability to precisely control electro-active groups in their pores, which broaden their application window. Thanks to their low weight density, long range crystallinity, reticular nature and tunable synthesis approach towards two and three dimensional (2D and 3D) networks, they have been found suitable for a range of challenging electrochemical applications. Our review focuses on the progress made on the design, synthesis and structure of COFs and their composites for various energy applications, such as metal-ion batteries, supercapacitors, water-splitting and solar cells. Additionally, attempts have been made to correlate the structural and mechanistic characteristics of COFs with their applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...