Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 15(11): 3135-3141, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38477646

ABSTRACT

White light emission (WLE) via dual thermally activated delayed fluorescence (TADF) from a single-component-based organic system remains challenging as a result of the difficulty in design. Here, we introduce a conformational isomerization approach to achieve WLE from a twisted donor-acceptor (PTzQP1) that comprises two phenothiazines covalently attached to the 6,8-isomeric positions of 2,4-diphenyl quinoline via two C-N single bonds. Spectroscopic studies and quantum chemistry calculations revealed that PTzQP1 shows WLE via simultaneous blue TADF and orange TADF covering the visible range (420-800 nm) with a photoluminescence quantum yield of 45 ± 2% and Commission Internationale de l'Éclairage (CIE) coordinates of 0.30, 0.33. The dual TADF features with high rates of reverse intersystem crossing (kRISC1 = 1.38 × 107 ± 0.24 s-1 and kRISC2 = 5.04 × 106 ± 0.32 s-1) are realized as a result of the low singlet-triplet gaps (S1EQ-T1EQ = 0.04 eV and S1QA-T1QA = 0.05 eV) of the quasi-axial (QA) and quasi-equatorial (QE) conformers. This finding is expected to provide a new direction for designing high-energy-efficient WLE emitters.

2.
J Phys Chem Lett ; 15(11): 3191-3196, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38483186

ABSTRACT

Organic photoswitches have attracted significant attention across various fields, such as sensing, bioimaging, photopharmacology, molecular machines, and solar energy storage. However, as a result of design complexities, achieving photothermally reversible ambient phosphorescence switching in the condensed state remains elusive. Herein, we explore the impact of norbornadiene (NBD)/quadricyclane (QC) substitution at position 5 of the benzonitrile acceptor covalently attached to the carbazole donor on photothermally reversible luminescence switching. Experimental investigations demonstrated that the CzN and TBCzN switches exhibited photothermally reversible fluorescence switching in solution. Moreover, in the condensed state, fluorescence and ambient phosphorescence switching were observed as a result of a low singlet-triplet (ΔEST) gap (CzN ⇆ CzQ, ΔESTCzN/CzQ = 0.05/0.28 eV; TBCzN ⇆ TBCzQ, ΔESTTBCzN/TBCzQ = 0.06/0.09 eV). Reversible ambient phosphorescence switching is primarily influenced by modulation of acceptor conjugation resulting from NBD ⇆ QC switching. This approach may provide important clues for the design of visible-light-absorbing photothermally reversible phosphorescent materials.

3.
J Phys Chem A ; 128(3): 581-589, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38206828

ABSTRACT

Organic ambient violet phosphorescent (AVP) materials are of great interest due to their involvement of high energy and longer-lived triplet excitons. Here, we show three fused ring functionalized donor-acceptor-donor (D-A-D/D-A-D') emitters (BPT1-BPT3), in which two catechol-based donors (3,4-dihydroxybenzophenone, catechol, or 3,5-ditert-butylcatechol) are covalently fused to the terephthalonitrile acceptor via four O-C single bonds. Spectroscopic analysis revealed that all the molecules show AVP (∼390-394 nm, τAVP = 73-101 µs) with phosphorescence quantum yields (ϕP) of 1.8-27.4% due to low singlet-triplet gaps (0.036-0.046 eV) and conformational effects. BPT3 with bulky tert-butyl groups increases AVP (ϕP = 27.4%). Quantum chemistry calculations reveal flat (F1) and twisted (F2) conformers (ground state) with a low energy difference (∼4-5 kcal/mol) for all molecules; the F1 conformer is responsible for efficient AVP, while weak blue thermally activated delayed fluorescence with longer-lived delayed components is realized from the F2 conformer. This approach may provide important clues for the design of high-energy organic phosphorescent materials.

4.
ACS Omega ; 7(4): 3722-3730, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35128280

ABSTRACT

Dual-room-temperature phosphorescence (DRTP) from organic molecules is of utmost importance in chemical physics. The Dexter-type triplet-to-triplet energy transfer mechanism can therefore be used to achieve DRTP at ambient conditions. Here, we report two donor-acceptor (D-A)-based guests (CQN1, CQN2) in which the donor (D) and acceptor (A) parts are held in angular orientation around the C-N single bond. Spectroscopic analysis along with computational calculations revealed that both guests are incapable of emitting either thermally activated delayed fluorescence (TADF) or RTP at ambient conditions due to large singlet-triplet gaps, which are presented to show host (benzophenone, BP)-sensitized DRTP via multiple intermolecular triplet-to-triplet energy transfer (TTET) channels that originate from the triplet state (T1 BP) of BP to the triplet states (T1 D, T1 A) of the D and A parts (TTET-I:T1 BP → T1 D; TTET-II:T1 BP → T1 A). In addition, an intramolecular TTET channel that occurs from the T1 D to T1 A states of the D and A parts of CQN2 is also activated due to the low triplet (T1 D)-triplet (T1 A) gap at ambient conditions. The efficiency of TTET processes was found to be 100%. The phosphorescence quantum yields (ϕP) and lifetimes (τP) were shown to be 13-20% and 0.48-0.55 s, respectively. Given the high lifetime of the DRTP feature of both host-guest systems (1000:1 molar ratio), a data security application is achieved. This design principle provides the first solid proof that DRTP via radiative decay of the dark triplet states of the D and A parts of D-A-based non-TADF systems is possible, revealing a method to increase the efficiency and lifetime of DRTP.

SELECTION OF CITATIONS
SEARCH DETAIL
...