Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 8(29): 14057-69, 2016 Aug 07.
Article in English | MEDLINE | ID: mdl-27399599

ABSTRACT

At present, there is no consensus understanding on the origin of photoluminescence of carbon nanoparticles, particularly the so-called carbon dots. Providing comparative analysis of spectroscopic studies in solution and on a single-molecular level, we demonstrate that these particles behave collectively as fixed single dipoles and probably are the quantum emitter entities. Their spectral and lifetime heterogeneity in solutions is explained by variation of the local chemical environment within and around luminescence centers. Hence, the carbon dots possess a unique hybrid combination of fluorescence properties peculiar to dye molecules, their conjugates and semiconductor nanocrystals. It is proposed that their optical properties are due to generation of H-aggregate-type excitonic states with their coherence spreading over the whole nanoparticles.

2.
Nano Lett ; 16(1): 237-42, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26605640

ABSTRACT

Success in super-resolution imaging relies on a proper choice of fluorescent probes. Here, we suggest novel easily produced and biocompatible nanoparticles-carbon nanodots-for super-resolution optical fluctuation bioimaging (SOFI). The particles revealed an intrinsic dual-color fluorescence, which corresponds to two subpopulations of particles of different electric charges. The neutral nanoparticles localize to cellular nuclei suggesting their potential use as an inexpensive, easily produced nucleus-specific label. The single particle study revealed that the carbon nanodots possess a unique hybrid combination of fluorescence properties exhibiting characteristics of both dye molecules and semiconductor nanocrystals. The results suggest that charge trapping and redistribution on the surface of the particles triggers their transitions between emissive and dark states. These findings open up new possibilities for the utilization of carbon nanodots in the various super-resolution microscopy methods based on stochastic optical switching.


Subject(s)
Carbon/chemistry , Molecular Imaging , Nanoparticles/chemistry , Cell Nucleus/ultrastructure , Fluorescent Dyes/chemistry , Microtubules/ultrastructure , Quantum Dots/chemistry
3.
Nano Lett ; 14(10): 5656-61, 2014 Oct 08.
Article in English | MEDLINE | ID: mdl-25247753

ABSTRACT

Inorganic carbon nanomaterials, also called carbon nanodots, exhibit a strong photoluminescence with unusual properties and, thus, have been the focus of intense research. Nonetheless, the origin of their photoluminescence is still unclear and the subject of scientific debates. Here, we present a single particle comprehensive study of carbon nanodot photoluminescence, which combines emission and lifetime spectroscopy, defocused emission dipole imaging, azimuthally polarized excitation dipole scanning, nanocavity-based quantum yield measurements, high resolution transmission electron microscopy, and atomic force microscopy. We find that photoluminescent carbon nanodots behave as electric dipoles, both in absorption and emission, and that their emission originates from the recombination of photogenerated charges on defect centers involving a strong coupling between the electronic transition and collective vibrations of the lattice structure.

4.
Phys Chem Chem Phys ; 16(30): 16075-84, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-24965696

ABSTRACT

Despite many efforts, the mechanisms of light absorption and emission of small fluorescent carbon nanoparticles (C-dots) are still unresolved and are a subject of active discussion. In this work we address the question as to whether the fluorescence is a collective property of these nanoparticles or they are composed of assembled individual emitters. Selecting three types of C-dots with "violet", "blue" and "green" emissions and performing a detailed study of fluorescence intensity, lifetime and time-resolved anisotropy as a function of excitation and emission wavelengths together with the effect of viscogen and dynamic fluorescence quencher, we demonstrate that the C-dots represent assemblies of surface-exposed fluorophores. They behave as individual emitters, display electronic anisotropy, do not exchange their excited-state energies via homo-FRET and possibly display sub-nanosecond intra-particle mobility.


Subject(s)
Carbon/chemistry , Nanostructures , Quantum Dots , Fluorescence Polarization , Spectrophotometry, Ultraviolet
5.
Methods Appl Fluoresc ; 1(4): 042001, 2013 Aug 12.
Article in English | MEDLINE | ID: mdl-29148449

ABSTRACT

Small brightly fluorescent carbon nanoparticles have emerged as a new class of materials important for sensing and imaging applications. We analyze comparatively the properties of nanodiamonds, graphene and graphene oxide 'dots', of modified carbon nanotubes and of diverse carbon nanoparticles known as 'C-dots' obtained by different methods. The mechanisms of their light absorption and luminescence emission are still unresolved and the arguments are presented for their common origin. Regarding present and potential applications, we provide critical comparison with the other types of fluorescence reporters, such as organic dyes and semiconductor quantum dots. Their most prospective applications in sensing (based on the changes of intensity, FRET and lifetime) and in imaging technologies on the level of living cells and whole bodies are overviewed. The possibilities for design on their basis of multifunctional nanocomposites on a broader scale of theranostics are outlined.

SELECTION OF CITATIONS
SEARCH DETAIL
...