Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(21): 13458-13467, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38739873

ABSTRACT

van der Waals (vdW) magnetic materials, such as Cr2Ge2Te6 (CGT), show promise for memory and logic applications. This is due to their broadly tunable magnetic properties and the presence of topological magnetic features such as skyrmionic bubbles. A systematic study of thickness and oxidation effects on magnetic domain structures is important for designing devices and vdW heterostructures for practical applications. Here, we investigate thickness effects on magnetic properties, magnetic domains, and bubbles in oxidation-controlled CGT crystals. We find that CGT exposed to ambient conditions for 5 days forms an oxide layer approximately 5 nm thick. This oxidation leads to a significant increase in the oxidation state of the Cr ions, indicating a change in local magnetic properties. This is supported by real-space magnetic texture imaging through Lorentz transmission electron microscopy. By comparing the thickness-dependent saturation field of oxidized and pristine crystals, we find that oxidation leads to a nonmagnetic surface layer that is thicker than the oxide layer alone. We also find that the stripe domain width and skyrmionic bubble size are strongly affected by the crystal thickness in pristine crystals. These findings underscore the impact of thickness and surface oxidation on the properties of CGT, such as saturation field and domain/skyrmionic bubble size, and suggest a pathway for manipulating magnetic properties through a controlled oxidation process.

2.
ACS Appl Mater Interfaces ; 16(19): 24514-24524, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38687904

ABSTRACT

Given the challenging task of constructing an efficient nitrogen reduction reaction (NRR) electrocatalyst with enhanced ambient condition performance, properties such as high specific surface area, fast electron transfer, and design of the catalyst surface constitute a group of key factors to be taken into consideration to guarantee outstanding catalytic performance and durability. Thereof, this work investigates the contribution of the 2D/2D heterojunction interface between MoS2 and reduced graphene oxide (rGO) on the electrocatalytic synthesis of NH3 in an alkaline media. The results revealed remarkable NRR performance on the MoS2@rGO 2D/2D hybrid electrocatalyst, characterized by a high NRR sensitivity (faradaic efficiency) of 34.7% with an NH3 yield rate of 3.98 ± 0.19 mg h-1 cm-2 at an overpotential of -0.3 V vs RHE in 0.1 M KOH solution. The hybrid electrocatalysts also exhibited selectivity for NH3 synthesis against the production of the hydrazine (N2H4) byproduct, hindrance of the competitive hydrogen evolution reaction (HER), and good durability over an operation period of 8 h. In hindsight, the study presented a low-cost and highly efficient catalyst design for achieving enhanced ammonia synthesis in alkaline media via the formation of defect-rich ultrathin MoS2@rGO nanostructures, consisting predominantly of an HER-hindering hexagonal 2H-MoS2 phase.

3.
Adv Sci (Weinh) ; : e2308955, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647404

ABSTRACT

The adjustable structures and remarkable physicochemical properties of 2D monoelemental materials, such as silicene and germanene, have attracted significant attention in recent years. They can be transformed into silicane (SiH) and germanane (GeH) through covalent functionalization via hydrogen atom termination. However, synthesizing these materials with a scalable and low-cost fabrication process to achieve high-quality 2D SiH and GeH poses challenges. Herein, groundbreaking 2D SiH and GeH materials with varying compositions, specifically Si0.25Ge0.75H, Si0.50Ge0.50H, and Si0.75Ge0.25H, are prepared through a simple and efficient chemical exfoliation of their Zintl phases. These 2D materials offer significant advantages, including their large surface area, high mechanical flexibility, rapid electron mobility, and defect-rich loose-layered structures. Among these compositions, the Si0.50Ge0.50H electrode demonstrates the highest discharge capacity, reaching up to 1059 mAh g-1 after 60 cycles at a current density of 75 mA g-1. A comprehensive ex-situ electrochemical analysis is conducted to investigate the reaction mechanisms of lithiation/delithiation in Si0.50Ge0.50H. Subsequently, an initial assessment of the c-Li15(SixGe1- x)4 phase after lithiation and the a-Si0.50Ge0.50 phase after delithiation is presented. Hence, this study contributes crucial insights into the (de)lithiation reaction mechanisms within germanane-silicane alloys. Such understanding is pivotal for mastering promising materials that amalgamate the finest properties of silicon and germanium.

4.
Small Methods ; : e2301461, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38243881

ABSTRACT

This research examines vanadium-deficient V2 C MXene, a two-dimensional (2D) vanadium carbide with exceptional electrochemical properties for rechargeable zinc-ion batteries. Through a meticulous etching process, a V-deficient, porous architecture with an expansive surface area is achieved, fostering three-dimensional (3D) diffusion channels and boosting zinc ion storage. Analytical techniques like scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller, and X-ray diffraction confirm the formation of V2 C MXene and its defective porous structure. X-ray photoelectron spectroscopy further verifies its transformation from the MAX phase to MXene, noting an increase in V3+ and V4+ states with etching. Cyclic voltammetry reveals superior de-zincation kinetics, evidenced by consistent V3+ /V4+ oxidation peaks at varied scanning rates. Overall, this V-deficient MXene outperforms raw MXenes in capacity and rate, although its capacity diminishes over extended cycling due to structural flaws. Theoretical analyses suggest conductivity rises with vacancies, enhancing 3D ionic diffusion as vacancy size grows. This work sheds light on enhancing V-based MXene structures for optimized zinc-ion storage.

5.
Small ; 20(10): e2305972, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37880906

ABSTRACT

Dual-functional photo-rechargeable (photo-R) energy storage devices, which acquire stored energy from solar energy harvesting, are being developed to battle the current energy crisis. In this study, these findings on the photo-driven characteristics of MXene-based photocathodes in photo-R zinc-ion capacitors (ZICs) are presented. Along with the pristine Ti3 C2 Tx MXene, tellurium/Ti3 C2 Tx (Te/Ti3 C2 Tx ) hybrid nanostructure is synthesized via facile chemical vapor transport technique to examine them for photocathodes in ZICs. Interestingly, the evaluated self-powered photodetector devices using MXene-based samples revealed a pyro-phototronic behavior introduced into the samples, with higher desirability observed in Te/Ti3 C2 Tx . The photo-R ZICs results exhibited a capacitance enhancement of 50.86% for Te/Ti3 C2 Tx at two scan rates of 5 and 10 mV s-1 under illumination, compared to dark conditions. In contrast, a capacitance enhancement of 30.20% is obtained for the pristine Ti3 C2 Tx at only a 5 mV s-1 scan rate. Furthermore, both samples achieved photo-charging voltage responses of ≈960 mV, and photoconversion efficiencies of 0.01% (for Te/ Ti3 C2 Tx ) and 0.07% (for Ti3 C2 Tx ). These characteristics in MXene-based single photo-R ZICs are significant and considerable with the distinguished integrated photo-R supercapacitors with solar cells, or coupled energy-harvesting and energy-storing devices reported recently in the literature.

6.
Nanoscale ; 15(30): 12648-12659, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37464871

ABSTRACT

The exploitation of two-dimensional (2D) vanadium carbide (V2CTx, denoted as V2C) in electrocatalytic hydrogen evolution reaction (HER) and nitrogen reduction reaction (NRR) is still in the stage of theoretical study with limited experimental exploration. Here, we present the experimental studies of V2C MXene-based materials containing two different bismuth compounds to confirm the possibility of using V2C as a potential electrocatalyst for HER and NRR. In this context, for the first time, we employed two different methods to synthesize 2D/0D and 2D/2D nanostructures. The 2D/2D V2C/BVO consisted of BiVO4 (denoted BVO) nanosheets wrapped in layers of V2C which were synthesized by a facile hydrothermal method, whereas the 2D/0D V2C/Bi consisted of spherical particles of Bi (Bi NPs) anchored on V2C MXenes using the solid-state annealing method. The resultant V2C/BVO catalyst was proven to be beneficial for HER in 0.5 M H2SO4 compared to pristine V2C. We demonstrated that the 2D/2D V2C/BVO structure can favor the higher specific surface area, exposure of more accessible catalytic active sites, and promote electron transfer which can be responsible for optimizing the HER activity. Moreover, V2C/BVO has superior stability in an acidic environment. Whilst we observed that the 2D/0D V2C/Bi could be highly efficient for electrocatalytic NRR purposes. Our results show that the ammonia (NH3) production and faradaic efficiency (FE) of V2C/Bi can reach 88.6 µg h-1 cm-2 and 8% at -0.5 V vs. RHE, respectively. Also V2C/Bi exhibited excellent long-term stability. These achievements present a high performance in terms of the highest generated NH3 compared to recent investigations of MXenes-based electrocatalysts. Such excellent NRR of V2C/Bi activity can be attributed to the effective suppression of HER which is the main competitive reaction of the NRR.

7.
Small Methods ; 7(8): e2201547, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37075736

ABSTRACT

Light-driven magnetic MXene-based microrobots (MXeBOTs) have been developed as an active motile platform for efficiently removing and degrading bisphenol A (BPA). Light-driven MXeBOTs are facilitated with the second control engine, i.e., embedded Fe2 O3 nanoparticles (NPs) for magnetic propulsion. The grafted bismuth NPs act as cocatalysts. The effect of the BPA concentration and the chemical composition of the swimming environment on the stability and reusability of the MXeBOTs are studied. The MAXBOTs, a developed motile water remediation platform, demonstrate the ability to remove/degrade approximately 60% of BPA within just 10 min and achieve near-complete removal/degradation (≈100%) within 1 h. Above 86% of BPA is mineralized within 1 h. The photocatalytic degradation of BPA using Bi/Fe/MXeBOTs demonstrates a significant advantage in the mineralization of BPA to CO2 and H2 O.

8.
ACS Appl Nano Mater ; 6(5): 3912-3918, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36938491

ABSTRACT

Black phosphorus (BP), a promising 2D material for electronics, energy storage, catalysis, and sensing, has sparked a research boom. However, exfoliated thin-layered BP is unstable and can easily be degraded under environmental conditions, severely limiting its practical applications. In this context, a simple and cost-effective method has been proposed that involves electrochemically exfoliating BP and simultaneously electrochemically depositing aluminum oxide (AlO x ) for passivation of the exfoliated BP. The ambient stability of the exfoliated BP is studied using a time-dependent atomic force microscope (AFM). The AlO x capping layer significantly improves the environmental stability of BP compared to uncapped BP. The thermal stability of the resulting BP is evaluated using power-dependent Raman spectroscopy. The results show that the AlO x -passivated BP has increased thermal stability, with only a slight shift in peak position toward higher Raman power intensity. These properties can make the material suitable for stable energy storage devices. Interestingly, the electrochemical exfoliation and passivation processes resulted in the BP with a twist angle (9.86°), which is expected to exhibit unique electronic properties similar to those of graphene with a twist angle.

9.
Nanoscale ; 15(8): 4033-4044, 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36728634

ABSTRACT

2D carbides and nitrides of transition metals (MXenes) have shown great promise in a variety of energy storage and energy conversion applications. The extraordinary properties of MXenes are because of their excellent conductivity, large carrier concentration, vast specific surface area, superior hydrophilicity, high volumetric capacitance, and rich surface chemistry. However, it is still desired to synthesize MXenes with specific functional groups that deliver the required characteristics. This is due to the fact that a considerable amount of metal atoms is exposed on the surface of MXenes during their synthesis through an etching procedure; hence, other anions and cations are uncontrollably implanted on their surfaces. Because of this situation, the first invented Ti3C2Tx MXene suffers from low photoresponsivity and detectivity, large overpotential, and small sensitivity in photoelectrochemical (PEC) photodetectors, hydrogen evolution reaction (HER), and sensing applications. Therefore, surface modification of the MXene structure is required to develop the device's performance. On the other hand, there is still a lack of understanding of the MXene mechanism in such cutting-edge applications. Thus, the manipulations of MXenes are highly dependent on understanding the device mechanism, suitable modification elements, and modification methods. This study for the first time reveals the conjugation effect of pre-selected S, Se, and Te chalcogen elements on a few-layered Ti3C2Tx MXene to synthesize new composites for PEC photodetector, HER, and vapor sensor applications. Also, the mechanism of the chalcogen decorated few-layered Ti3C2Tx MXene composites for each application is discussed. The selection of a few-layered Ti3C2Tx MXene is due to its fascinating characteristics which make it capable to be considered as an appropriate substrate and incorporating chalcogen atoms. The Te-decorated few-layered Ti3C2Tx MXene composite provides better performances in PEC photodetector and vapor sensing applications. Although the potential value of the Se-decorated few-layered Ti3C2Tx composite is slightly lower than that of the Te-decorated sample in HER application, its overpotential is still greater than that of the Te-decorated sample. The acquired results show that the S-decorated few-layered Ti3C2Tx composite demonstrates the lowest performance in all three examined applications in comparison with the other two samples.

10.
ACS Omega ; 8(2): 2629-2638, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36687114

ABSTRACT

Charge storage in electrochemical double-layer capacitors (EDLCs) is via the adsorption of electrolyte counterions in their positive and negative electrodes under an applied potential. This study investigates the EDLC-type charge storage in carbon nanotubes (CNT) electrodes in aqueous acidic (NaHSO4), basic (NaOH), and neutral (Na2SO4) electrolytes of similar cations but different anions as well as similar anions but different cations (Na2SO4 and Li2SO4) in a two-electrode Swagelok-type cell configuration. The physicochemical properties of ions, such as mobility/diffusion and solvation, are correlated with the charge storage parameters. The neutral electrolytes offer superior charge storage over the acidic and basic counterparts. Among the studied ions, SO4 2- and Li+ showed the most significant capacitance owing to their larger solvated ion size. The charge stored by the anions and cations follows the order SO4 2- > HSO4 - > OH- and Li+ > Na+, respectively. Consequently, the CNT//Li2SO4//CNT cell displayed outstanding charge storage indicators (operating voltage ∼0-2 V, specific capacitance ∼122 F·g-1, specific energy ∼67 W h·kg-1, and specific power ∼541 W·kg-1 at 0.5 A·g-1) than the other cells, which could light a red light-emitting diode (2.1 V) for several minutes. Besides, the CNT//Li2SO4//CNT device showed exceptional rate performance with a capacitance retention of ∼95% at various current densities (0.5-2.5 A·g-1) after 6500 cycles. The insights from this work could be used to design safer electrochemical capacitors of high energy density and power density.

11.
ACS Nano ; 17(1): 288-299, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36537371

ABSTRACT

Atomic-level defects in van der Waals (vdW) materials are essential building blocks for quantum technologies and quantum sensing applications. The layered magnetic semiconductor CrSBr is an outstanding candidate for exploring optically active defects because of a direct gap, in addition to a rich magnetic phase diagram, including a recently hypothesized defect-induced magnetic order at low temperature. Here, we show optically active defects in CrSBr that are probes of the local magnetic environment. We observe a spectrally narrow (1 meV) defect emission in CrSBr that is correlated with both the bulk magnetic order and an additional low-temperature, defect-induced magnetic order. We elucidate the origin of this magnetic order in the context of local and nonlocal exchange coupling effects. Our work establishes vdW magnets like CrSBr as an exceptional platform to optically study defects that are correlated with the magnetic lattice. We anticipate that controlled defect creation allows for tailor-made complex magnetic textures and phases with direct optical access.

12.
Small Methods ; 7(8): e2201329, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36526601

ABSTRACT

Two-dimensional nanomaterials, as one of the most widely used substrates for energy storage devices, have achieved great success in terms of the overall capacity. Despite the extensive research effort dedicated to this field, there are still major challenges concerning capacitance modulation and stability of the 2D materials that need to be overcome. Doping of the crystal structures, pillaring methods and 3D structuring of electrodes have been proposed to improve the material properties. However, these strategies are usually accompanied by a significant increase in the cost of the entire material preparation process and also a lack of the versatility for modification of the various types of the chemical structures. Hence in this work, versatile, cheap, and environmentally friendly method for the enhancement of the electrochemical parameter of various MXene-based supercapacitors (Ti3 C2 , Nb2 C, and V2 C), coated with functional and charged organic molecules (zwitterions-ZW) is introduced. The MXene-organic hybrid strategy significantly increases the ionic absorption (capacitance boost) and also forms a passivation layer on the oxidation-prone surface of the MXene through the covalent bonds. Therefore, this work demonstrates a new, cost-effective, and versatile approach (MXene-organic hybrid strategy) for the design and fabrication of hybrid MXene-base electrode materials for energy storage/conversion systems.

13.
ACS Appl Mater Interfaces ; 14(41): 46386-46400, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36206403

ABSTRACT

Even though WS2 nanotubes (NTs-WS2) have great potential as anode materials for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) thanks to their unusual layered structure, their conductivity and cycling stability are far from satisfactory. To tackle these issues, carbon-coated WS2 (NTs-WS2@C) nanocomposites were prepared through a facile synthesis method that involved precipitating a carbon precursor (20% sucrose) on WS2 nanotubes, followed by annealing treatment under an argon environment. Thanks to the presence of highly conductive and mechanically robust carbon on the outer surface, NTs-WS2@C nanocomposites show improved electrochemical performance compared with bare NTs-WS2. After 60 cycles at 80 mA g-1 current density, the cells display high capacities of 305 mAh g-1 in LIBs and 152 mAh g-1 in SIBs, respectively. As the current density increases to 600 mA g-1, it provides specific capacities of 209 and 115 mAh g-1, correspondingly. The enhanced electrochemical performance in LIBs and SIBs is primarily attributed to the synergistic effects of the tubular architecture of WS2, carbon network and stable nanocomposite structure, which can effectively constrain volume variation during the metal ions intercalation/deintercalation processes.

14.
Cyborg Bionic Syst ; 2022: 9824057, 2022.
Article in English | MEDLINE | ID: mdl-36285309

ABSTRACT

Biohybrid micro- and nanorobots are integrated tiny machines from biological components and artificial components. They can possess the advantages of onboard actuation, sensing, control, and implementation of multiple medical tasks such as targeted drug delivery, single-cell manipulation, and cell microsurgery. This review paper is to give an overview of biohybrid micro- and nanorobots for smart drug delivery applications. First, a wide range of biohybrid micro- and nanorobots comprising different biological components are reviewed in detail. Subsequently, the applications of biohybrid micro- and nanorobots for active drug delivery are introduced to demonstrate how such biohybrid micro- and nanorobots are being exploited in the field of medicine and healthcare. Lastly, key challenges to be overcome are discussed to pave the way for the clinical translation and application of the biohybrid micro- and nanorobots.

15.
Small ; 18(36): e2106612, 2022 09.
Article in English | MEDLINE | ID: mdl-35122470

ABSTRACT

Urinary-based infections affect millions of people worldwide. Such bacterial infections are mainly caused by Escherichia coli (E. coli) biofilm formation in the bladder and/or urinary catheters. Herein, the authors present a hybrid enzyme/photocatalytic microrobot, based on urease-immobilized TiO2 /CdS nanotube bundles, that can swim in urea as a biocompatible fuel and respond to visible light. Upon illumination for 2 h, these microrobots are able to remove almost 90% of bacterial biofilm, due to the generation of reactive radicals, while bare TiO2 /CdS photocatalysts (non-motile) or urease-coated microrobots in the dark do not show any toxic effect. These results indicate a synergistic effect between the self-propulsion provided by the enzyme and the photocatalytic activity induced under light stimuli. This work provides a photo-biocatalytic approach for the design of efficient light-driven microrobots with promising applications in microbiology and biomedicine.


Subject(s)
Biofilms , Escherichia coli , Robotics , Titanium , Catalysis , Humans , Titanium/pharmacology , Urea/pharmacology , Urease/pharmacology
16.
Inorg Chem ; 61(9): 4092-4101, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35191302

ABSTRACT

High-entropy materials, with complex compositions and unique cocktail characteristics, have recently drawn significant attention. Additionally, a family of sodium super ion conductors (NASICONs)-structured phosphates in energy storage areas shows a comprehensive application for traditional alkaline ion batteries and, in particular, solid-state electrolytes. However, there is no precedent in fabricating this kind of NASICON-type high-entropy phase. Here, we report the successful fabrication of two well-crystallized high-entropy phosphates, namely, Na3(Ti0.2V0.2Mn0.2Cr0.2Zr0.2)2(PO4)3 (HE-N3M2P3) and Na(Ti0.2V0.2Mn0.2Cr0.2Zr0.2)2PO4Ox (HE-NMP). The prepared materials in which the transition metals (TMs) of Ti, V, Mn, Cr, and Zr occupy the same 12c Wykoff position can form a structure analogous to R3̅c Na3V2(PO4)3 that is carefully determined by X-ray diffraction, neutron diffraction, and transmission electron microscopy. Further, their performance for sodium ion batteries and sodium-based solid-state electrolytes was evaluated. The HE-N3M2P3 might exhibit a promising electrochemical performance for sodium storage in terms of its structure resembling that of Na3V2(PO4)3. Meanwhile, the HE-NMP shows considerable electrochemical activity with numerous broad redox ranges during extraction and insertion of Na+, related to the coexistence of several TM elements. The evaluated temperature-dependent ionic conductivity for HE-NMP solid electrolyte varies from 10-6 to 10-5 S cm-1 from room temperature to 398.15 K, offering high potential for energy storage applications as a new high-entropy system.

17.
ACS Omega ; 4(3): 5534-5539, 2019 Mar 31.
Article in English | MEDLINE | ID: mdl-31459713

ABSTRACT

Here, we propose a plasmon-induced redistribution of a thin polymer layer as a unique way for a residual layer-free lithographic approach. In particular, we demonstrate an ultrafast area-selective fabrication method using a low-intensity visible laser irradiation to direct the polymer mass flow, under the plasmon-active substrates. Plasmon-supported substrates were created by thermal annealing of Ag thin films and covered by thin polystyrene layers. Then, laser beam writing (LBW) was applied to introduce a surface tension gradient through the local plasmon heating. As a result, polystyrene was completely removed from the irradiated place, without any residual layer. The proposed approach does not require any additional development steps, such as solvent or plasma treatment. To demonstrate the advantages of the proposed technique, we implemented the LBW-patterned structures for further spatially selective surface functionalization, including the metal deposition, spontaneous thiol grafting, and electrochemical deposition of ordered polypyrrole array.

SELECTION OF CITATIONS
SEARCH DETAIL
...