Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 126(17): 172002, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33988430

ABSTRACT

The amplitude for the neutrinoless double ß (0νßß) decay of the two-neutron system nn→ppe^{-}e^{-} constitutes a key building block for nuclear-structure calculations of heavy nuclei employed in large-scale 0νßß searches. Assuming that the 0νßß process is mediated by a light-Majorana-neutrino exchange, a systematic analysis in chiral effective field theory shows that already at leading order a contact operator is required to ensure renormalizability. In this Letter, we develop a method to estimate the numerical value of its coefficient (in analogy to the Cottingham formula for electromagnetic contributions to hadron masses) and validate the result by reproducing the charge-independence-breaking contribution to the nucleon-nucleon scattering lengths. Our central result, while derived in dimensional regularization, is given in terms of the renormalized amplitude A_{ν}(|p|,|p^{'}|), matching to which will allow one to determine the contact-term contribution in regularization schemes employed in nuclear-structure calculations. Our results thus greatly reduce a crucial uncertainty in the interpretation of searches for 0νßß decay.

2.
Phys Rev Lett ; 123(5): 051801, 2019 Aug 02.
Article in English | MEDLINE | ID: mdl-31491286

ABSTRACT

We investigate the interplay between the high- and low-energy phenomenology of CP-violating interactions of the Higgs boson with gauge bosons. For this purpose, we use an effective field theory approach and consider all dimension-six operators arising in so-called universal theories. We compute their loop-induced contributions to electric dipole moments and the CP asymmetry in B→X_{s}γ and compare the resulting current and prospective constraints to the projected sensitivity of the LHC. Low-energy measurements are shown to generally have a far stronger constraining power, which results in highly correlated allowed regions in coupling space-a distinctive pattern that could be probed at the high-luminosity LHC.

3.
Phys Rev Lett ; 120(20): 202001, 2018 May 18.
Article in English | MEDLINE | ID: mdl-29864333

ABSTRACT

Within the framework of chiral effective field theory, we discuss the leading contributions to the neutrinoless double-beta decay transition operator induced by light Majorana neutrinos. Based on renormalization arguments in both dimensional regularization with minimal subtraction and a coordinate-space cutoff scheme, we show the need to introduce a leading-order short-range operator, missing in all current calculations. We discuss strategies to determine the finite part of the short-range coupling by matching to lattice QCD or by relating it via chiral symmetry to isospin-breaking observables in the two-nucleon sector. Finally, we speculate on the impact of this new contribution on nuclear matrix elements of relevance to experiment.

SELECTION OF CITATIONS
SEARCH DETAIL
...