Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem J ; 330 ( Pt 2): 633-40, 1998 Mar 01.
Article in English | MEDLINE | ID: mdl-9480869

ABSTRACT

Several vertebrate collagenases have been reported to cleave type II collagen, leading to irreversible tissue destruction in osteoarthritis. We have investigated the action of MMP-1 and MMP-13 on type II collagen by use of neoepitope antibodies and N-terminal sequencing. Previous studies have suggested that the initial cleavage of type II collagen by MMP-13 is followed by a second cleavage, three amino acids carboxy-terminal to the primary cleavage site. We show here that this cleavage is also produced by APMA-activated MMP-1 in combination with MMP-3 (i.e. fully activated MMP-1). The use of a selective inhibitor of MMP-3 has shown that it is this enzyme, rather than interstitial collagenase which had been exposed to MMP-3, which makes the second cleavage. In addition we have identified, through N-terminal sequencing, a third cleavage site, three residues carboxy-terminal to the secondary site. Since MMP-2 is thought to be responsible for gelatinolytic action on type II collagen we have investigated the effect of MMP-2 after the initial helical cleavage made by either MMP-1 or MMP-13. A combination of MMPs-1, -2 and -3 results in both the second and third cleavage sites; adding MMP-2 to MMP-13 did not alter the cleavage pattern produced by MMP-13 on its own. We conclude that none of the three cleavage sites will provide information about the specific identity of the collagenolytic enzymes involved in collagen cleavage in situ. Staining of cartilage sections of osteoarthritis patients with the neoepitope antibodies revealed type II collagen degradation starting at or near the articular surface and extending into the mid and deep zones with increasing degeneration of the cartilage.


Subject(s)
Collagen/metabolism , Collagenases/metabolism , Animals , Antibodies/metabolism , Cattle , Humans , Immune Sera , Matrix Metalloproteinase 1 , Matrix Metalloproteinase 13 , Osteoarthritis/metabolism , Peptide Fragments/immunology , Peptide Fragments/metabolism , Peptide Mapping , Protein Structure, Secondary , Rabbits
2.
Arch Biochem Biophys ; 320(2): 375-9, 1995 Jul 10.
Article in English | MEDLINE | ID: mdl-7625846

ABSTRACT

The four known proteinases from papaya latex, namely papain (EC 3.4.22.2), chymopapain (EC 3.4.22.6), caricain (EC 3.4.22.30), and glycyl endopeptidase (EC 3.4.22.25), were purified to homogeneity and fully characterized by single radial immunodiffusion and active-site titration. A modified HPLC gel permeation assay was used to determine the kinetic constants for aggrecan hydrolysis by the papaya proteinases. The disappearance of intact aggrecan monomer was first-order, indicating that for the four enzymes studied the Km was much larger than 0.5 microM and that kcat/Km = 1.2 +/- 0.1 x 10(6) M-1 s-1 for chymopapain, 1.20 +/- 0.08 x 10(6) M-1 s-1 for caricain, 0.90 +/- 0.02 x 10(6) M-1 s-1 for papain, and 0.120 +/- 0.005 x 10(6) M-1 s-1 for glycyl endopeptidase. Chymodiactin, the chymopapain preparation used for chemonucleolysis, consists of a mixture of chymopapain (70%), caricain (20%), and glycyl endopeptidase (4%). The rate constant for the aggrecan hydrolysis by such a mixture was not significantly different from the rate constant for pure chymopapain. As a result of these observations, we predict that pure chymopapain could replace partially purified chymopapain preparations for chemonucleolysis.


Subject(s)
Endopeptidases/metabolism , Extracellular Matrix Proteins , Plants/enzymology , Proteoglycans/metabolism , Aggrecans , Endopeptidases/isolation & purification , Hydrolysis , Intervertebral Disc Chemolysis , Kinetics , Lectins, C-Type
3.
J Chromatogr B Biomed Appl ; 656(1): 203-8, 1994 Jun 03.
Article in English | MEDLINE | ID: mdl-7952030

ABSTRACT

Three cysteine proteinases, i.e. chymopapain, papaya proteinase IV and proteinase III, were purified to homogeneity from papaya latex using a combination of ion-exchange chromatography and hydrophobic interaction chromatography. During the purification procedure, the thiol-groups of the active center were reversibly blocked as mixed disulfides with 2-thiopyridone. Homogeneity was proved electrophoretically by native polyacrylamide gel electrophoresis (PAGE), sodium dodecyl sulfate (SDS)-PAGE and rechromatography on a Mono S 5/5 column at pH 5.0.


Subject(s)
Cysteine Endopeptidases/isolation & purification , Plants/enzymology , Amidohydrolases/analysis , Chromatography , Chromatography, Ion Exchange , Chymopapain/isolation & purification , Electrophoresis, Polyacrylamide Gel , Hydrogen-Ion Concentration , Latex/chemistry , Plant Proteins/analysis , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...