Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 553: 308-319, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31212230

ABSTRACT

The on demand delivery of novel peptide actives, traditional pharmaceuticals, nutrients and/or vitamins is a ever present challenge due to the digestive and metabolic degradation of the active and the delivery vehicle. Biodegradable biopolymer hydrogels have long held promise as candidates for creating tailored release profiles due to the ability to control gel porosity. The present study describes the creation of novel hierarchical biopolymer hydrogels for the controlled release of lipids/lipophilic actives pharmaceutical ingredients (APIs), and mathematically describes the mechanisms that affect the timing of release. The creation of phase separated protein/polysaccharide core (6.6 wt% gelatin, 40 wt% Oil in water emulsion) shell structures (7 g/L xanthan with 70-140 g/L ß-lactoglobulin) altered enzyme mass transport processes. This core shell structure enabled the creation of a tailorable burst release of API during gastrointestinal digestion where there is a delay in the onset of release, without affecting the kinetics of release. The timing of the delay could be readily programmed (with release of between 60 and 240 min) by controlling either the thickness or protein concentration (between 70 g/L and 140 g/L ß-lactoglobulin) of the outer mixed biopolymer hydrogel shell (7 g/L xanthan with 70-140 g/L ß-lactoglobulin). Enzyme diffusion measurements demonstrated that surface erosion was the main degradation mechanism. A kinetic model was created to describe the delayed burst release behaviour of APIs encapsulated within the core, and successfully predicted the influence of shell thickness and shell protein density on the timing of gastro-intestinal release (in vitro). Our work highlights the creation of a novel family of core-shell hydrogel oral dosage forms capable of programmable delivery of lipids/lipophilic APIs. These findings could have considerable implications for the delivery of peptides, poorly soluble drugs, or the programmed delivery of lipids within the gastrointestinal tract.


Subject(s)
Biopolymers/metabolism , Delayed-Action Preparations/metabolism , Gastrointestinal Tract/metabolism , Hydrogels/metabolism , Biopolymers/chemistry , Biopolymers/isolation & purification , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/isolation & purification , Gastrointestinal Tract/chemistry , Hydrogels/chemistry , Hydrogels/isolation & purification , Molecular Structure , Particle Size , Surface Properties
2.
Food Funct ; 7(1): 58-68, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26599197

ABSTRACT

The understanding of how foods are digested and metabolised is essential to enable the design/selection of foods as part of a balanced diet. Essential to this endeavour is the development of appropriate biorelevant in vitro digestion tools. In this work, the influence of gastric pH profile on the in vitro digestion of mixtures of ß-lactoglobulin (ßlg) and xanthan gum prior to and after heat induced gelation was investigated. A conventional highly acidic (pH 1.9) gastric pH profile was compared to two dynamic gastric pH profiles (initial pH of 6.0 vs. 5.2 and H(+) secretion rates of 60 vs. 36 mmol h(-1)) designed to mimic the changes in gastric pH observed during clinical trials with high protein meals. In moving away from the pH 1.9 model, to a pH profile reflecting in vivo conditions, the initial rate and degree of protein digestion halved during the first 45 minutes. After 90 minutes of gastric digestion, all three pH profiles caused similar extents of protein digestion. Given that 50% gastric emptying times of (test) meals are in range of 30-90 min, it would seem highly relevant to use a dynamic pH gastric model rather than a pH 1.9 (USP) or pH 3 model (INFOGEST) in assessing the impact of food structuring approaches on protein digestion. The impact that heat induced gelation had on the degree of gel digestion by pepsin was also investigated. Surprisingly, it was found that heat induced gelation of ßlg-xanthan mixtures at 70-90 °C for 20 minutes lead to a considerable decrease in the rate of proteolysis, which contrasts many studies of dispersed aggregates and gels of ßlg alone whose heating accelerates pepsin activity due to unfolding. In the present case, the formation of a dense protein network created a fine pore structure which restricted pepsin access into the gel thereby slowing proteolysis. This work not only has implications for the in vitro assessment of protein digestion, but also highlights how protein digestion might be slowed, learnings that might have an influence on the design of foods as part of a satisfying balanced diet.


Subject(s)
Biopolymers/metabolism , Digestion , Gels/metabolism , Lactoglobulins/metabolism , Polysaccharides, Bacterial/metabolism , Stomach/chemistry , Adult , Diet , Dietary Proteins/metabolism , Food , Gastric Acid/chemistry , Gastric Acid/metabolism , Gastric Emptying , Gels/chemistry , Hot Temperature , Humans , Hydrogen-Ion Concentration , Kinetics , Male , Middle Aged , Models, Biological , Pepsin A/metabolism , Proteolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...