Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 9(8)2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32784734

ABSTRACT

We investigated the effect of dry-heat treatment on the properties of faba bean protein concentrate using soy protein concentrate as a benchmark. While soy protein-widely used as an ingredient in meat replacers-is recovered through a wet fractionation, protein recovery from starch bearing pulses like faba bean can be done via dry fractionation. This process does not require drying or heating steps and therefore, keeps the original protein functionality intact. This results in differences in properties such as water binding capacity of the protein fraction. Faba bean protein concentrate was dry-heated at temperatures from 75-175 °C, which resulted in higher water-holding capacity and less soluble protein, approaching values of soy protein concentrate. These changes were due to partial denaturation of protein, changing the structure of the protein, and exposing hydrophobic sites. This led to protein aggregation, as observed by light microscopy. Only noncovalent bonds caused the decrease of solubility of dry-heated faba bean protein concentrate. We conclude that dry-heating of dry fractionated faba bean protein can change the functional properties of the protein fraction to desired properties for certain applications. The effect is similar to that on soy, but the underlying mechanisms differ.

2.
J Agric Food Chem ; 67(34): 9591-9600, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31414795

ABSTRACT

Process conditions that are applied to make structured soy-protein-based food commonly include high temperatures. Those conditions can induce protein oxidation, leading to a decrease in their susceptibility to proteolysis by digestive enzymes. We aimed to investigate the effects of thermomechanical processing on oxidation and in vitro gastric digestion of commercial soy protein ingredients. Samples were sheared at 100 to 140 °C and characterized for acid uptake, carbonyl content, electrophoresis, and surface hydrophobicity. The enzymatic hydrolysis was determined in simulated gastric conditions. Protein ingredients were already oxidized and showed higher surface hydrophobicity and hydrolysis rate compared with those of the processed matrices. However, no clear correlation between the level of carbonyls and the hydrolysis rate was found. Therefore, we conclude that gastric digestion is mostly driven by the matrix structure and composition and the available contact area between the substrate and proteolytic enzymes.


Subject(s)
Digestion , Gastric Mucosa/metabolism , Soybean Proteins/metabolism , Gastric Mucosa/enzymology , Humans , Hydrogen-Ion Concentration , Hydrolysis , Hydrophobic and Hydrophilic Interactions , Models, Biological , Oxidation-Reduction , Soybean Proteins/chemistry
3.
Food Res Int ; 107: 281-288, 2018 05.
Article in English | MEDLINE | ID: mdl-29580487

ABSTRACT

Concentrated soy protein isolate (SPI) - pectin blends acquire fibrous textures by shear-induced structuring while heating. The objective of this study was to determine the viscoelastic properties of concentrated SPI-pectin blends under similar conditions as during shear-induced structuring, and after cooling. A closed cavity rheometer was used to measure these properties under these conditions. At 140 °C, SPI and pectin had both a lower G* than the blend of the two and also showed a different behavior in time. Hence, the viscoelastic properties of the blend are richer than those of a simple composite material with stable physical phase properties. In addition, the G'pectin was much lower compared with the G'SPI and G'SPI-pectin upon cooling, confirming that pectin formed a weak dispersed phase. The results can be explained by considering that the viscoelastic properties of the blend are influenced by thermal degradation of the pectin phase. This degradation leads to: i) release of galacturonic acid, ii) lowering of the pH, and iii) water redistribution from the SPI towards the pectin phase. The relative importance of those effects are evaluated.


Subject(s)
Elasticity/physiology , Pectins/analysis , Pectins/chemistry , Soybean Proteins/analysis , Soybean Proteins/chemistry , Soybean Proteins/physiology , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...