Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Vox Sang ; 91(3): 244-51, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16958837

ABSTRACT

BACKGROUND AND OBJECTIVES: Loss of phospholipid asymmetry in the membrane of red blood cells (RBC) results in exposure of phosphatidylserine (PS) and to subsequent removal from the circulation. In this study, we investigated the effect of long-term storage of RBCs on two activities affecting phospholipid asymmetry: the ATP-dependent aminophospholipid translocase (or flippase, transporting PS from the outer to the inner leaflet) and phospholipid scrambling (which will move PS from the inner to the outer leaflet). MATERIALS AND METHODS: Standard leukodepleted RBC concentrates were stored in saline-adenine-glucose-mannitol (SAGM) at 4 degrees C for up to 7 weeks. PS exposure was determined by measurement of AnnexinV-FITC binding to the cells, flippase activity by measurement of the inward translocation of NBD-labelled PS. Scrambling activity was determined by following the inward translocation of fluorescent NBD-phosphatidylcholine. In parallel, intracellular ATP levels were determined. RESULTS: PS exposure amounted to only 1.5 +/- 0.3% positive cells (n = 8) after 5 weeks of storage, which slightly increased to 3.5 +/- 0.7% (n = 8) after 7 weeks of storage. Flippase activity started to decrease after 21 days of storage and reached 81 +/- 5% of the control value after 5 weeks of storage (n = 6) and 59 +/- 6% (n = 6) after 7 weeks. Also in RBC obtained by apheresis, flippase activity decreased upon storage. Scrambling activity remained virtually absent during storage, explaining the low PS exposure despite the decrease in flippase activity. Rejuvenation of RBC after 7 weeks to increase ATP levels only partially restored flippase activity, but in combination with a correction of the intracellular pH to that of fresh cells, almost complete restoration was achieved. The decrease in flippase activity after prolonged storage did make the RBCs more prone to PS exposure after activation of phospholipid scrambling. CONCLUSION: This study shows that, although PS exposure remains low, prolonged storage does compromise the RBC membrane by affecting flippase activity. When the metabolic changes induced by storage are corrected, flippase activity can be restored.


Subject(s)
Blood Preservation , Erythrocytes/enzymology , Lipid Bilayers/metabolism , Phosphatidylserines/metabolism , Phospholipid Transfer Proteins/metabolism , Adenosine Triphosphate/analysis , Blood Preservation/adverse effects , Blood Preservation/methods , Erythrocyte Membrane/enzymology , Erythrocyte Transfusion/methods , Hemolysis , Humans , Phospholipid Transfer Proteins/chemistry , Refrigeration/adverse effects , Time Factors
2.
Biochemistry ; 43(13): 4012-9, 2004 Apr 06.
Article in English | MEDLINE | ID: mdl-15049708

ABSTRACT

Maintenance of phospholipid asymmetry of the plasma membrane is essential for cells to prevent phagocytic removal or acceleration of coagulation. Photodynamic treatment (PDT), which relies on the generation of reactive oxygen species to achieve inactivation of pathogens, might be a promising approach in the future for decontamination of red blood cell concentrates. To investigate whether PDT affects phospholipid asymmetry, erythrocytes were illuminated in the presence of 1,9-dimethyl-methylene blue (DMMB) as photosensitizer and subsequently labeled with FITC-labeled annexin V. This treatment resulted in about 10% annexin V positive cells, indicating exposure of phosphatidylserine (PS). Treatment of erythrocytes with N-ethylmaleimide (NEM) prior to illumination, to inhibit inward translocation of PS via the aminophospholipid translocase, resulted in enhanced PS exposure, while treatment with H(2)O(2) (previously shown to inhibit phospholipid scrambling) greatly diminished PS exposure, indicating the induction of phospholipid scrambling by PDT. Only erythrocytes illuminated in the presence of DMMB showed translocation of NBD-phosphatidylcholine (NBD-PC), confirming scrambling induction. Double label experiments indicated that PS exposure does not occur without concurrent scrambling activity. Induction of scrambling was only moderately affected by Ca(2+) depletion of the cells. In contrast, scavengers of singlet oxygen were found to prevent phospholipid scrambling induced by PDT. The results of this study show that phospholipid scrambling is induced in human erythrocytes by exposure to singlet oxygen.


Subject(s)
4-Chloro-7-nitrobenzofurazan/analogs & derivatives , Egtazic Acid/analogs & derivatives , Erythrocytes/metabolism , Methylene Blue/analogs & derivatives , Phospholipid Transfer Proteins , Phospholipids/blood , Phospholipids/chemistry , Singlet Oxygen/blood , Singlet Oxygen/chemistry , 4-Chloro-7-nitrobenzofurazan/pharmacology , Annexin A5/blood , Biological Transport/drug effects , Ca(2+) Mg(2+)-ATPase/blood , Calcium/antagonists & inhibitors , Calcium/chemistry , Carrier Proteins/blood , Carrier Proteins/chemistry , Egtazic Acid/pharmacology , Erythrocytes/drug effects , Erythrocytes/enzymology , Ethylmaleimide/pharmacology , Humans , Intracellular Fluid/metabolism , Membrane Proteins/blood , Membrane Proteins/chemistry , Methylene Blue/pharmacology , Phosphatidylcholines/pharmacology , Photosensitizing Agents/pharmacology , Protein Binding
3.
Biochem J ; 350 Pt 2: 531-5, 2000 Sep 01.
Article in English | MEDLINE | ID: mdl-10947968

ABSTRACT

The role of multidrug resistance protein 1 (MRP1) in the maintenance of transbilayer lipid asymmetry in the erythrocyte membrane was investigated. The transbilayer distribution of endogenous phospholipids and [(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]hexanoyl (NBD)-labelled lipid analogues was compared in the absence and the presence of inhibitors of MRP1. At equilibrium the transbilayer distribution of the NBD analogues (in the absence of MRP1 inhibitors) was very similar to that of the endogenous lipids. Inhibition of MRP1 by verapamil or indomethacin resulted in a shift in the amount of probe that was internalized: approx. 50% of NBD-labelled phosphatidylcholine (PtdCho) and 9% of NBD-sphingomyelin (NBD-Spm) were no longer extractable by BSA in cells treated with inhibitor, in comparison with 25% and 3% for control cells respectively. To verify whether inhibition of MRP1 also affected the distribution of the endogenous phospholipids, phospholipase A2 and sphingomyelinase were used to assess the amount of each of the various lipid classes present in the membrane outer leaflet. No shift in phospholipid distribution was observed after 5 h of incubation with verapamil or indomethacin. However, after 48 h of incubation with these inhibitors, significantly smaller amounts of PtdCho and Spm were present in the outer membrane leaflet. No appreciable change was observed in the distribution of phosphatidylethanolamine or phosphatidylserine. Decreased hydrolysis of PtdCho and Spm was not due to endovesicle formation, as revealed by electron microscopy. This is the first report to show that MRP1 has a role in the maintenance of the outwards orientation of endogenous choline-containing phospholipids in the erythrocyte membrane.


Subject(s)
4-Chloro-7-nitrobenzofurazan/analogs & derivatives , ATP-Binding Cassette Transporters/metabolism , Aminocaproates , Cell Membrane/metabolism , Erythrocytes/metabolism , 4-Chloro-7-nitrobenzofurazan/pharmacology , Aminocaproic Acid/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Erythrocytes/ultrastructure , Fluorescent Dyes/pharmacology , Humans , Hydrolysis , Indomethacin/pharmacology , Lipid Bilayers/metabolism , Microscopy, Electron , Multidrug Resistance-Associated Proteins , Phosphatidylcholines/metabolism , Phospholipases A/metabolism , Phospholipases A2 , Phospholipids/metabolism , Sphingomyelin Phosphodiesterase/metabolism , Time Factors , Vasodilator Agents/pharmacology , Verapamil/pharmacology
4.
Biochim Biophys Acta ; 1439(3): 317-30, 1999 Aug 18.
Article in English | MEDLINE | ID: mdl-10446420

ABSTRACT

The plasma membrane, which forms the physical barrier between the intra- and extracellular milieu, plays a pivotal role in the communication of cells with their environment. Exchanging metabolites, transferring signals and providing a platform for the assembly of multi-protein complexes are a few of the major functions of the plasma membrane, each of which requires participation of specific membrane proteins and/or lipids. It is therefore not surprising that the two leaflets of the membrane bilayer each have their specific lipid composition. Although membrane lipid asymmetry has been known for many years, the mechanisms for maintaining or regulating the transbilayer lipid distribution are still not completely understood. Three major players have been presented over the past years: (1) an inward-directed pump specific for phosphatidylserine and phosphatidylethanolamine, known as aminophospholipid translocase; (2) an outward-directed pump referred to as 'floppase' with little selectivity for the polar headgroup of the phospholipid, but whose actual participation in transport of endogenous lipids has not been well established; and (3) a lipid scramblase, which facilitates bi-directional migration across the bilayer of all phospholipid classes, independent of the polar headgroup. Whereas a concerted action of aminophospholipid translocase and floppase could, in principle, account for the maintenance of lipid asymmetry in quiescent cells, activation of the scramblase and concomitant inhibition of the aminophospholipid translocase causes a collapse of lipid asymmetry, manifested by exposure of phosphatidylserine on the cell surface. In this article, each of these transporters will be discussed, and their physiological importance will be illustrated by the Scott syndrome, a bleeding disorder caused by impaired lipid scrambling. Finally, phosphatidylserine exposure during apoptosis will be briefly discussed in relation to inhibition of translocase and simultaneous activation of scramblase.


Subject(s)
Cell Membrane/metabolism , Lipid Bilayers/metabolism , Lipid Metabolism , Phospholipid Transfer Proteins , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Apoptosis , Carrier Proteins/metabolism , Cell Line , Humans , Membrane Proteins/metabolism , Phosphatidylserines/metabolism
5.
Lupus ; 7 Suppl 2: S126-31, 1998.
Article in English | MEDLINE | ID: mdl-9814689

ABSTRACT

The various phospholipid classes that comprise mammalian cell membranes are distributed over both leaflets of the bilayer in a non-random fashion. While a specific and ATP-dependent transporter is responsible for rapid inward movement of aminophospholipids, its inhibition does not lead to spontaneous redistribution of lipids. Conditions of cellular activation which are accompanied with increased levels of intracellular Ca2+ may cause a collapse of lipid asymmetry by switching on an ATP-independently operating scramblase, which accelerates bidirectional movement of all phospholipid classes. The most prominent change in transmembrane lipid distribution is surface exposure of phosphatidylserine (PS), the more so since conditions which activate scramblase in most if not all cases lead to inhibition of aminophospholipid translocase activity, which will prevent PS from being pumped back to the inner leaflet of the membrane. Surface-exposed PS serves at least two important physiological functions: it promotes blood coagulation and offers a recognition signal for clearance by macrophages and other cells of the reticuloendothelial system. As such, PS exposure may form an important early event in the process of apoptosis to ensure rapid removal of these cells in order to avoid release of their inflammatory contents. Defective regulation of transbilayer lipid distribution may result in clinical manifestations such as in the Scott syndrome, a bleeding disorder caused by an impaired scramblase activity. Conversely, excessive PS exposure may lead to thrombosis or may explain formation of so-called antiphospholipid antibodies as occurring in patients with antiphospholipid syndrome.


Subject(s)
Membrane Lipids/metabolism , Phospholipid Transfer Proteins , Phospholipids/metabolism , Animals , Anions , Antibodies, Antiphospholipid/immunology , Antibodies, Antiphospholipid/metabolism , Antiphospholipid Syndrome/blood , Antiphospholipid Syndrome/immunology , Apoptosis , Autoimmune Diseases/blood , Autoimmune Diseases/immunology , Blood Coagulation , Calcium Signaling , Carrier Proteins/metabolism , Enzyme Activation , Humans , Lipid Bilayers , Mammals/metabolism , Membrane Proteins/metabolism , Mononuclear Phagocyte System/physiology , Phosphatidylserines/metabolism
6.
Biochemistry ; 37(42): 14833-7, 1998 Oct 20.
Article in English | MEDLINE | ID: mdl-9778357

ABSTRACT

The outward movement (flop) of fluorescently labeled analogues of phosphatidylserine (PS) and phosphatidylcholine (PC) in human and murine red blood cells (RBC) was examined. 1-Oleoyl-2-[6(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]caproyl (C6-NBD) analogues of PS and PC were incorporated in the inner leaflet of the plasma membrane through the action of aminophospholipid translocase or through equilibration upon prolonged incubation, respectively. After removal of noninternalized probe, externalization of C6-NBD-PS or C6-NBD-PC from the inner to outer leaflet was monitored by continuous incubation of the cells in the presence of bovine serum albumin. Flop rates for both probes in intact human RBC were virtually identical (t1/2 approximately 1.5 h), confirming earlier findings by Bitbol et al. [Bitbol, M., et al. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 6783-6787] and Connor et al. [Connor, J., et al. (1992) J. Biol. Chem. 267, 19412-19417]. Flop activity in resealed RBC ghosts could only be found upon coinclusion of both ATP and oxidized glutathione (GSSG). Furthermore, flop in intact cells was sensitive to verapamil (IC50 = 5-7 microM), vincristine (IC50 = 20 microM), and indomethacin (IC50 = 50 microM), suggesting the involvement of proteins conferring multidrug resistance (MDR). Experiments with RBC from knock-out mice for multidrug resistance P-glycoproteins (Mdr1a/1b-/- and Mdr2-/-) and multidrug resistance protein 1 (Mrp1-/-) revealed that Mrp1 is responsible for the observed flop of the fluorescent lipid analogues. We found no indications for outward transport of endogenous PS by any of these drug-transporting proteins as measured by a sensitive prothrombinase assay. Neither aminophospholipid translocase nor Ca2+-induced lipid scramblase activities were affected in RBC of these knock-out mice. We conclude that lipid floppase activity, as detected with lipid probes, reflects the activity of MRP1 recognizing the modified lipid analogues as xenobiotics to be expelled from the cell.


Subject(s)
4-Chloro-7-nitrobenzofurazan , ATP Binding Cassette Transporter, Subfamily B, Member 1/blood , Erythrocyte Membrane/metabolism , Lipid Bilayers/metabolism , Phospholipids/blood , 4-Chloro-7-nitrobenzofurazan/analogs & derivatives , 4-Chloro-7-nitrobenzofurazan/blood , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Animals , Biological Transport , Drug Resistance, Multiple/genetics , Enzyme Activation , Erythrocyte Membrane/enzymology , Humans , Lipid Bilayers/blood , Mice , Mice, Knockout , Thromboplastin/genetics , Thromboplastin/metabolism
7.
Biol Chem ; 379(8-9): 973-86, 1998.
Article in English | MEDLINE | ID: mdl-9792430

ABSTRACT

This review deals with current concepts on the regulation and function of phospholipid asymmetry in biological membranes. This ubiquitous phenomenon is characterized by a distinctly different lipid composition between the inner and outer leaflet of the membrane bilayer. Transbilayer asymmetry is controlled by different membrane proteins that function as lipid transporters, catalyzing uni- or bi-directional transbilayer movement of lipids. Under normal conditions, an ATP-dependent protein (aminophospholipid translocase) generates and maintains phospholipid asymmetry by promoting unidirectional transport of aminophospholipids from the outer- to the inner leaflet. The membrane lipid asymmetry may be compromised during cellular activation by a Ca2+-dependent transporter (lipid scramblase) that facilitates rapid bi-directional movement of all major phospholipid classes. A major consequence of this collapse of lipid asymmetry is the exposure of phosphatidylserine (PS) at the outer membrane surface. Surface exposure of PS has important physiological and pathological implications for blood coagulation, apoptosis, and cell-cell recognition.


Subject(s)
Blood Cells/metabolism , Membrane Lipids/metabolism , Phospholipids/blood , Animals , Humans , Lipid Bilayers
8.
Blood ; 91(6): 2133-8, 1998 Mar 15.
Article in English | MEDLINE | ID: mdl-9490700

ABSTRACT

Scott syndrome is an hereditary bleeding disorder characterized by a deficiency in platelet procoagulant activity. Unlike normal blood cells, Scott platelets, as well as erythrocytes and lymphocytes, are strongly impaired in their ability to scramble their membrane phospholipids when challenged with Ca2+. In normal cells this collapse of membrane asymmetry leads to surface exposure of phosphatidylserine. Here we report that Scott erythrocytes show an apparent defect in tyrosine phosphorylation on treatment with Ca2+-ionophore. Diminished tyrosine phosphorylation was also apparent in activated Scott platelets, but much less pronounced than observed in red blood cells. On the other hand, tyrosine phosphorylation profiles observed in Scott red blood cell ghosts after sealing in the presence of adenosine triphosphate (ATP) were indistinguishable from those obtained from normal ghosts. Several observations argue in favor of a mechanism in which tyrosine phosphorylation in red blood cells is facilitated by, rather than required for scrambling of membrane lipids. Staurosporin blocks tyrosine phosphorylation in normal red blood cells, but does not inhibit the lipid scrambling process. White ghosts from normal erythrocytes, resealed in the absence of ATP, exhibit Ca2+-induced lipid scrambling without tyrosine phosphorylation. A selective inhibitor of Ca2+-induced lipid scrambling also showed an apparent inhibition of tyrosine phosphorylation in ionophore-treated normal red blood cells, similar to that observed in Scott erythrocytes. While this inhibitor also suppressed Ca2+-induced lipid scrambling in ghosts that were sealed in the presence of ATP, it did not inhibit tyrosine kinase activity. We conclude that the apparent deficiency in tyrosine phosphorylation in Scott cells is an epiphenomenon, possibly associated with a defect in phospholipid scrambling, but not causal to this defect.


Subject(s)
Blood Coagulation Disorders/genetics , Calcium/pharmacology , Carrier Proteins/antagonists & inhibitors , Erythrocyte Membrane/drug effects , Ionophores/pharmacology , Membrane Lipids/metabolism , Membrane Proteins/antagonists & inhibitors , Methomyl/analogs & derivatives , Phospholipid Transfer Proteins , Phospholipids/metabolism , Protein Processing, Post-Translational/drug effects , Protein-Tyrosine Kinases/blood , Adenosine Triphosphate/pharmacology , Blood Coagulation Disorders/blood , Blood Platelets/drug effects , Blood Platelets/metabolism , Carrier Proteins/blood , Carrier Proteins/genetics , Cell Membrane/drug effects , Cell Membrane/metabolism , Enzyme Inhibitors/pharmacology , Erythrocyte Membrane/metabolism , Humans , Membrane Proteins/blood , Membrane Proteins/genetics , Methomyl/pharmacology , Phosphatidylserines/blood , Phosphatidylserines/physiology , Phosphorylation/drug effects , Staurosporine/pharmacology , Syndrome , Thromboplastin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL