Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38451147

ABSTRACT

We present the Python Red Pitaya Lockbox (PyRPL), an open source software package that allows the implementation of automatic digital feedback controllers for quantum optics experiments on commercially available, affordable Field-Programmable Gate Array (FPGA) boards. Our software implements the digital generation of various types of error signals, from an analog input through the application of loop filters of high complexity and real-time gain adjustment for multiple analog output signals, including different algorithms for resonance search, lock acquisition sequences, and in-loop gain optimization. Furthermore, all necessary diagnostic instruments, such as an oscilloscope, a network analyzer, and a spectrum analyzer, are integrated into our software. Apart from providing a quickly scalable, automatic feedback controller, the lock performance that can be achieved by using PyRPL with imperfect equipment, such as piezoelectric transducers and noisy amplifiers, is better than the one achievable with standard analog controllers due to the higher complexity of implementable filters and possibilities of nonlinear operations in the FPGA. This drastically reduces the cost of added complexity when introducing additional feedback loops to an experiment. The open-source character also distinguishes PyRPL from commercial solutions, as it allows users to customize functionalities at various levels, ranging from the easy integration of PyRPL-based feedback controllers into existing setups to the modification of the FPGA functionality. A community of developers provides fast and efficient implementation and testing of software modifications.

2.
Light Sci Appl ; 6(1): e16190, 2017 Jan.
Article in English | MEDLINE | ID: mdl-30167192

ABSTRACT

Light scattering by a two-dimensional photonic-crystal slab (PCS) can result in marked interference effects associated with Fano resonances. Such devices offer appealing alternatives to distributed Bragg reflectors and filters for various applications, such as optical wavelength and polarization filters, reflectors, semiconductor lasers, photodetectors, bio-sensors and non-linear optical components. Suspended PCS also have natural applications in the field of optomechanics, where the mechanical modes of a suspended slab interact via radiation pressure with the optical field of a high-finesse cavity. The reflectivity and transmission properties of a defect-free suspended PCS around normal incidence can be used to couple out-of-plane mechanical modes to an optical field by integrating it in a free-space cavity. Here we demonstrate the successful implementation of a PCS reflector on a high-tensile stress Si3N4 nanomembrane. We illustrate the physical process underlying the high reflectivity by measuring the photonic-crystal band diagram. Moreover, we introduce a clear theoretical description of the membrane scattering properties in the presence of optical losses. By embedding the PCS inside a high-finesse cavity, we fully characterize its optical properties. The spectrally, angular- and polarization-resolved measurements demonstrate the wide tunability of the membrane's reflectivity, from nearly 0 to 99.9470±0.0025%, and show that material absorption is not the main source of optical loss. Moreover, the cavity storage time demonstrated in this work exceeds the mechanical period of low-order mechanical drum modes. This so-called resolved-sideband condition is a prerequisite to achieve quantum control of the mechanical resonator with light.

3.
Rev Sci Instrum ; 87(12): 123906, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28040968

ABSTRACT

A new method of probing mechanical losses and comparing the corresponding deposition processes of metallic and dielectric coatings in 1-100 MHz frequency range and cryogenic temperatures is presented. The method is based on the use of high-quality quartz acoustic cavities whose internal losses are orders of magnitude lower than any available coating nowadays. The approach is demonstrated for chromium, chromium/gold, and multilayer tantala/silica coatings. The Ta2O5/SiO2 coating has been found to exhibit a loss angle lower than 1.6 × 10-5 near 30 MHz at 4 K. The results are compared to the previous measurements.

4.
Science ; 330(6010): 1520-3, 2010 Dec 10.
Article in English | MEDLINE | ID: mdl-21071628

ABSTRACT

Electromagnetically induced transparency is a quantum interference effect observed in atoms and molecules, in which the optical response of an atomic medium is controlled by an electromagnetic field. We demonstrated a form of induced transparency enabled by radiation-pressure coupling of an optical and a mechanical mode. A control optical beam tuned to a sideband transition of a micro-optomechanical system leads to destructive interference for the excitation of an intracavity probe field, inducing a tunable transparency window for the probe beam. Optomechanically induced transparency may be used for slowing and on-chip storage of light pulses via microfabricated optomechanical arrays.

5.
Nature ; 455(7212): 510-4, 2008 Sep 25.
Article in English | MEDLINE | ID: mdl-18818653

ABSTRACT

The state of a microscopic system encodes its complete quantum description, from which the probabilities of all measurement outcomes are inferred. Being a statistical concept, the state cannot be obtained from a single system realization, but can instead be reconstructed from an ensemble of copies through measurements on different realizations. Reconstructing the state of a set of trapped particles shielded from their environment is an important step in the investigation of the quantum-classical boundary. Although trapped-atom state reconstructions have been achieved, it is challenging to perform similar experiments with trapped photons because cavities that can store light for very long times are required. Here we report the complete reconstruction and pictorial representation of a variety of radiation states trapped in a cavity in which several photons survive long enough to be repeatedly measured. Atoms crossing the cavity one by one are used to extract information about the field. We obtain images of coherent states, Fock states with a definite photon number and 'Schrödinger cat' states (superpositions of coherent states with different phases). These states are equivalently represented by their density matrices or Wigner functions. Quasi-classical coherent states have a Gaussian-shaped Wigner function, whereas the Wigner functions of Fock and Schrödinger cat states show oscillations and negativities revealing quantum interferences. Cavity damping induces decoherence that quickly washes out such oscillations. We observe this process and follow the evolution of decoherence by reconstructing snapshots of Schrödinger cat states at successive times. Our reconstruction procedure is a useful tool for further decoherence and quantum feedback studies of fields trapped in one or two cavities.

6.
Nature ; 448(7156): 889-93, 2007 Aug 23.
Article in English | MEDLINE | ID: mdl-17713527

ABSTRACT

The irreversible evolution of a microscopic system under measurement is a central feature of quantum theory. From an initial state generally exhibiting quantum uncertainty in the measured observable, the system is projected into a state in which this observable becomes precisely known. Its value is random, with a probability determined by the initial system's state. The evolution induced by measurement (known as 'state collapse') can be progressive, accumulating the effects of elementary state changes. Here we report the observation of such a step-by-step collapse by non-destructively measuring the photon number of a field stored in a cavity. Atoms behaving as microscopic clocks cross the cavity successively. By measuring the light-induced alterations of the clock rate, information is progressively extracted, until the initially uncertain photon number converges to an integer. The suppression of the photon number spread is demonstrated by correlations between repeated measurements. The procedure illustrates all the postulates of quantum measurement (state collapse, statistical results and repeatability) and should facilitate studies of non-classical fields trapped in cavities.

7.
Nature ; 446(7133): 297-300, 2007 Mar 15.
Article in English | MEDLINE | ID: mdl-17361178

ABSTRACT

A microscopic quantum system under continuous observation exhibits at random times sudden jumps between its states. The detection of this quantum feature requires a quantum non-demolition (QND) measurement repeated many times during the system's evolution. Whereas quantum jumps of trapped massive particles (electrons, ions or molecules) have been observed, this has proved more challenging for light quanta. Standard photodetectors absorb light and are thus unable to detect the same photon twice. It is therefore necessary to use a transparent counter that can 'see' photons without destroying them. Moreover, the light needs to be stored for durations much longer than the QND detection time. Here we report an experiment in which we fulfil these challenging conditions and observe quantum jumps in the photon number. Microwave photons are stored in a superconducting cavity for times up to half a second, and are repeatedly probed by a stream of non-absorbing atoms. An atom interferometer measures the atomic dipole phase shift induced by the non-resonant cavity field, so that the final atom state reveals directly the presence of a single photon in the cavity. Sequences of hundreds of atoms, highly correlated in the same state, are interrupted by sudden state switchings. These telegraphic signals record the birth, life and death of individual photons. Applying a similar QND procedure to mesoscopic fields with tens of photons should open new perspectives for the exploration of the quantum-to-classical boundary.

SELECTION OF CITATIONS
SEARCH DETAIL
...