Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(21)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36363299

ABSTRACT

In this research, the mechanical behavior of masonry mortars made with partial substitution of sand by recycled fine aggregates (RFAs) of mortar (MT) and recycled clay brick (RCB) was compared. Mortar specimens were built in two groups (MT and RCB) considering different replacement proportions by dry weight. To reduce the water absorption of RFAs during mortar making, the prewetting method was utilized. All the mixtures were assembled with a volumetric cement-to-aggregate ratio of 1:4 and a consistency of 175 ± 5 mm. The properties in the fresh and hardening state of mortars were analyzed separately. The experimental results showed that the properties of mortars in a fresh state (bulk density and air content) were affected if RFA was added to the mixture; however, mortars assembled with up to 40% and 50% of MT and RCB, respectively, accomplished a compressive strength value of reference for new mixtures. Both mortar groups showed good results in adhesive strength values, with the RCB mortars standing up as they achieved greater adherence than the control mortar with substitution percentages of up to 30%. Therefore, the reutilization of both RFAs is feasible, notably in rendering and bonding functions.

2.
Materials (Basel) ; 14(6)2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33809950

ABSTRACT

In this research we evaluated the use of recycled fine mortar aggregate (RFMA) as a fine aggregate for new masonry mortar creation. The pre-wetting effect on the aggregate before creating the mixture was analyzed as a method to reduce its absorption potential. A control mixture of conventional mortar and two groups of recycled mortars were designed with a partial replacement of natural sand by RFMA (pre-wetted and not pre-wetted) performed in different proportions. The results established that the pre-wetting process allows a reduction in the amount of water required during the creation of new mixtures, regulating the water/cement (W/C) ratio and improving the properties of recycled mortars such as air content, fresh and hardened densities, and compressive and adhesive strength for all substitution levels. Mortar made with a 20% substitution and pre-wetted until it was at 67% of its absorption capacity displayed adhesive values higher than the ones shown by the reference mortar. The pre-wetting process proves to be an easy performance technique; it is inexpensive, environmentally friendly, and the most valuable fact is that specialized equipment is not necessarily needed. This process is the most profitable option for improving RFMA exploitation and reuse.

3.
Materials (Basel) ; 13(10)2020 May 21.
Article in English | MEDLINE | ID: mdl-32455646

ABSTRACT

Recycling is an important habit to avoid waste. This paper evaluates the performance of masonry mortar, elaborated by replacing natural sand with recycled fine aggregate (RFA) obtained from mortar. Five families of mixtures were prepared with different replacement proportions: 20%, 40%, 60%, and 100%. A 1:4 volumetric cement-to-aggregate ratio was used for all mixtures by experimentally adjusting the amount of water to achieve the same consistency of 175 ± 5 mm. The effects of the following procedures were analyzed: (1) the use of a deconstruction technique to collect the RFA, (2) pre-wetting of the aggregates, and (3) the use of a commercial plasticizer. Experimental results show that it is possible to use this type of recycled fine aggregate as a substitute for natural sand by up to 60% in the manufacture of masonry mortar without significantly affecting its properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...