Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Mar Drugs ; 21(2)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36827140

ABSTRACT

The use of marine enzymes as catalysts for biotechnological applications is a topical subject. Marine enzymes usually display better operational properties than their animal, plant or bacterial counterparts, enlarging the range of possible biotechnological applications. Due to the fact that cytochrome P450 enzymes can degrade many different toxic environmental compounds, these enzymes have emerged as valuable tools in bioremediation processes. The present work describes the isolation, purification and biochemical characterization of a liver NADPH-dependent cytochrome P450 reductase (CPR) from the marine fish Liza klunzingeri (LkCPR). Experimental results revealed that LkCPR is a monomer of approximately 75 kDa that is active in a wide range of pH values (6-9) and temperatures (40-60 °C), showing the highest catalytic activity at pH 8 and 50 °C. The activation energy of the enzyme reaction was 16.3 kcal mol-1 K-1. The KM values for cytochrome C and NADPH were 8.83 µM and 7.26 µM, and the kcat values were 206.79 s-1 and 202.93 s-1, respectively. LkCPR displayed a specific activity versus cytochrome C of 402.07 µmol min-1 mg1, the highest activity value described for a CPR up to date (3.2-4.7 times higher than the most active reported CPRs) and showed the highest thermostability described for a CPR. Taking into account all these remarkable catalytic features, LkCPR offers great potential to be used as a suitable biocatalyst.


Subject(s)
Cytochromes c , NADPH-Ferrihemoprotein Reductase , Animals , NADP , NADPH-Ferrihemoprotein Reductase/chemistry , NADPH-Ferrihemoprotein Reductase/metabolism , Liver/metabolism , Cytochrome P-450 Enzyme System
2.
Int J Mol Sci ; 23(19)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36233108

ABSTRACT

One of the major drawbacks of the industrial implementation of enzymatic processes is the low operational stability of the enzymes under tough industrial conditions. In this respect, the use of thermostable enzymes in the industry is gaining ground during the last decades. Herein, we report a structure-guided approach for the development of novel and thermostable 2'-deoxyribosyltransferases (NDTs) based on the computational design of disulfide bonds on hot spot positions. To this end, a small library of NDT variants from Lactobacillus delbrueckii (LdNDT) with introduced cysteine pairs was created. Among them, LdNDTS104C (100% retained activity) was chosen as the most thermostable variant, displaying a six- and two-fold enhanced long-term stability when stored at 55 °C (t1/255 °C ≈ 24 h) and 60 °C (t1/260 °C ≈ 4 h), respectively. Moreover, the biochemical characterization revealed that LdNDTS104C showed >60% relative activity across a broad range of temperature (30−90 °C) and pH (5−7). Finally, to study the potential application of LdNDTS104C as an industrial catalyst, the enzymatic synthesis of nelarabine was successfully carried out under different substrate conditions (1:1 and 3:1) at different reaction times. Under these experimental conditions, the production of nelarabine was increased up to 2.8-fold (72% conversion) compared with wild-type LdNDT.


Subject(s)
Enzymes, Immobilized , Pentosyltransferases , Arabinonucleosides , Cysteine , Disulfides/chemistry , Enzyme Stability , Enzymes, Immobilized/chemistry , Pentosyltransferases/metabolism , Substrate Specificity , Temperature
3.
Biotechnol Adv ; 51: 107701, 2021 11 01.
Article in English | MEDLINE | ID: mdl-33515673

ABSTRACT

Nowadays, pharmaceutical industry demands competitive and eco-friendly processes for active pharmaceutical ingredients (APIs) manufacturing. In this context, enzyme and whole-cell mediated processes offer an efficient, sustainable and cost-effective alternative to the traditional multi-step and environmentally-harmful chemical processes. Particularly, 2'-deoxyribosyltransferases (NDTs) have emerged as a novel synthetic alternative, not only to chemical but also to other enzyme-mediated synthetic processes. This review describes recent findings in the development and scaling up of NDTs as industrial biocatalysts, including the most relevant and recent examples of single enzymatic steps, multienzyme cascades, chemo-enzymatic approaches, and engineered biocatalysts. Finally, to reflect the inventive and innovative steps of NDT-mediated bioprocesses, a detailed analysis of recently granted patents, with specific focus on industrial synthesis of nucleoside-based APIs, is hereunder presented.


Subject(s)
Nucleosides , Pharmaceutical Preparations , Biocatalysis , Drug Industry
4.
Bioresour Technol ; 322: 124547, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33352394

ABSTRACT

The use of magnetic biocatalysts is highly beneficial in bioprocesses technology, as it allows their easy recovering and enhances biocatalyst lifetime. Thus, it simplifies operational processing and increases efficiency, leading to more cost-effective processes. The use of small-size matrices as carriers for enzyme immobilization enables to maximize surface area and catalysts loading, also reducing diffusion limitations. As highly expensive nanoparticles (nm size) usually aggregate, their application at large scale is not recommended. In contrast, the use of magnetic micro-macro (µm-mm size) matrices leads to more homogeneous biocatalysts with null or very low aggregation, which facilitates an easy handling and recovery. The present review aims to highlight recent trends in the application of medium-to-high size magnetic biocatalysts in different areas (biodiesel production, food and pharma industries, protein purification or removal of environmental contaminants). The advantages and disadvantages of these above-mentioned magnetic biocatalysts in bioprocess technology will be also discussed.


Subject(s)
Enzymes, Immobilized , Nanoparticles , Diffusion , Magnetic Phenomena , Magnetics
5.
Article in English | MEDLINE | ID: mdl-32671046

ABSTRACT

In our search for novel biocatalysts for the synthesis of nucleic acid derivatives, we found a good candidate in a putative dual-domain hypoxanthine-guanine phosphoribosyltransferase (HGPRT)/adenylate kinase (AMPK) from Zobellia galactanivorans (ZgHGPRT/AMPK). In this respect, we report for the first time the recombinant expression, production, and characterization of a bifunctional HGPRT/AMPK. Biochemical characterization of the recombinant protein indicates that the enzyme is a homodimer, with high activity in the pH range 6-7 and in a temperature interval from 30 to 80°C. Thermal denaturation experiments revealed that ZgHGPRT/AMPK exhibits an apparent unfolding temperature (Tm) of 45°C and a retained activity of around 80% when incubated at 40°C for 240 min. This bifunctional enzyme shows a dependence on divalent cations, with a remarkable preference for Mg2+ and Co2+ as cofactors. More interestingly, substrate specificity studies revealed ZgHGPRT/AMPK as a bifunctional enzyme, which acts as phosphoribosyltransferase or adenylate kinase depending upon the nature of the substrate. Finally, to assess the potential of ZgHGPRT/AMPK as biocatalyst for the synthesis of nucleoside-5'-mono, di- and triphosphates, the kinetic analysis of both activities (phosphoribosyltransferase and adenylate kinase) and the effect of water-miscible solvents on enzyme activity were studied.

6.
Article in English | MEDLINE | ID: mdl-32612982

ABSTRACT

Nucleoside-2'-deoxyribosyl-transferases (NDTs) catalyze a transglycosylation reaction consisting of the exchange of the 2'-deoxyribose moiety between a purine and/or pyrimidine nucleoside and a purine and/or pyrimidine base. Because NDTs are highly specific for 2'-deoxyribonucleosides they generally display poor activity on modified C2' and C3' nucleosides and this limitation hampers their applicability as biocatalysts for the synthesis of modified nucleosides. We now report the production and purification of a novel NDT from Archaeoglobus veneficus that is endowed with native ribosyltransferase activity and hence it is more properly classified as an N-ribosyltransferase (AvNRT). Biophysical and biochemical characterization revealed that AvNRT is a homotetramer that displays maximum activity at 80°C and pH 6 and shows remarkably high stability at high temperatures (60-80°C). In addition, the activity of AvNRT was found to increase up to 2-fold in 4 M NaCl aqueous solution and to be retained in the presence of several water-miscible organic solvents. For completeness, and as a proof of concept for possible industrial applications, this thermophilic and halotolerant biocatalyst was successfully employed in the synthesis of different purine ribonucleoside analogs.

7.
Biochim Biophys Acta Proteins Proteom ; 1868(1): 140251, 2020 01.
Article in English | MEDLINE | ID: mdl-31299354

ABSTRACT

Nowadays enzymatic synthesis of nucleic acid derivatives is gaining momentum over traditional chemical synthetic processes. Biotransformations catalyzed by whole cells or enzymes offer an ecofriendly and efficient alternative to the traditional multistep chemical methods, avoiding the use of chemical reagents and organic solvents that are expensive and environmentally harmful. Herein we report for the first time the covalent immobilization a uracil phosphoribosyltransferase (UPRT). In this sense, UPRT from Thermus thermophilus HB8 was immobilized onto glutaraldehyde-activated MagReSyn®Amine magnetic iron oxide porous microparticles (MTtUPRT). According to the catalyst load experiments, MTtUPRT3 was selected as optimal biocatalyst for further studies. MTtUPRT3 was active and stable in a broad range of temperature (70-100 °C) and in the pH interval 6-8, displaying maximum activity at 100 °C and pH 7 (activity 968 IU/gsupport, retained activity 100%). In addition, MTtUPRT3 could be reused up to 8 times in the synthesis of uridine-5'-monophosphate (UMP). Finally, MTtUPRT3 was successfully applied in the sustainable synthesis of different 5-modified uridine-5'-monophosphates at short times. Taking into account these results, MTtUPRT3 would emerge as a valuable biocatalyst for the synthesis of nucleoside monophosphates through an efficient and environmentally friendly methodology.


Subject(s)
Enzymes, Immobilized/metabolism , Pentosyltransferases/metabolism , Thermus thermophilus/enzymology , Uridine Monophosphate/analogs & derivatives , Uridine Monophosphate/biosynthesis , Biocatalysis , Ferric Compounds , Glutaral , Microspheres
8.
Org Biomol Chem ; 17(34): 7891-7899, 2019 08 28.
Article in English | MEDLINE | ID: mdl-31397456

ABSTRACT

Insight into the catalytic mechanism of Lactobacillus leichmannii nucleoside 2'-deoxyribosyltransferase (LlNDT) has been gained by calculating a quantum mechanics-molecular mechanics (QM/MM) free-energy landscape of the reaction within the enzyme active site. Our results support an oxocarbenium species as the reaction intermediate and thus an SN1 reaction mechanism in this family of bacterial enzymes. Our mechanistic proposal is validated by comparing experimental kinetic data on the impact of the single amino acid replacements Tyr7, Glu98 and Met125 with Ala, Asp and Ala/norLeu, respectively, and accounts for the specificity shown by this enzyme on a non-natural substrate. This work broadens our understanding of enzymatic C-N bond cleavage and C-N bond formation.


Subject(s)
Pentosyltransferases/chemistry , Catalytic Domain , Kinetics , Lactobacillus leichmannii/enzymology , Models, Chemical , Molecular Dynamics Simulation , Proof of Concept Study , Protein Conformation , Quantum Theory , Thermodynamics
9.
Bioresour Technol ; 289: 121772, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31307865

ABSTRACT

The present work aims to develop a magnetic biocatalyst for customized production of nucleoside analogues using mutant His-tagged purine 2'-deoxyribosyltransferase from Trypanosoma brucei (TbPDTV11S) immobilized onto Ni2+ chelate magnetic iron oxide porous microparticles (MTbPDTV11S). Biochemical characterization revealed MTbPDTV11S5 as optimal candidate for further studies (10,552 IU g-1; retained activity 54% at 50 °C and pH 6.5). Interestingly, MTbPDTV11S5 displayed the highest activity value described up to date for an immobilized NDT. Moreover, MTbPDTV11S5 was successfully employed in the one-pot, one-step production of different therapeutic nucleoside analogues, such as cladribine or 2'-deoxy-2-fluoroadenosine, among others. Finally, MTbPDTV11S5 proved to be stable when stored at 50 °C for 8 h and pH 6.0 and reusable up to 10 times without negligible loss of activity in the enzymatic production of the antitumor prodrug 2'-deoxy-2-fluoroadenosine.


Subject(s)
Pentosyltransferases/metabolism , Chelating Agents , Deoxyadenosines , Enzyme Stability , Enzymes, Immobilized/metabolism , Ferric Compounds , Magnetics , Nucleosides , Purines , Temperature
10.
Chembiochem ; 20(24): 2996-3000, 2019 12 13.
Article in English | MEDLINE | ID: mdl-31264760

ABSTRACT

The use of nucleoside 2'-deoxyribosyltransferases (NDTs) as biocatalysts for the industrial synthesis of nucleoside analogues is often hindered by their strict preference for 2'-deoxyribonucleosides. It is shown herein that a highly versatile purine NDT from Trypanosoma brucei (TbPDT) can also accept ribonucleosides as substrates; this is most likely because of the distinct role played by Asn53 at a position that is usually occupied by Asp in other NDTs. Moreover, this unusual activity was improved about threefold by introducing a single amino acid replacement at position 5, following a structure-guided approach. Biophysical and biochemical characterization revealed that the TbPDTY5F variant is a homodimer that displays maximum activity at 50 °C and pH 6.5 and shows a remarkably high melting temperature of 69 °C. Substrate specificity studies demonstrate that 6-oxopurine ribonucleosides are the best donors (inosine>guanosine≫adenosine), whereas no significant preferences exist between 6-aminopurines and 6-oxopurines as base acceptors. In contrast, no transferase activity could be detected on xanthine and 7-deazapurines. TbPDTY5F was successfully employed in the synthesis of a wide range of modified ribonucleosides containing different purine analogues.


Subject(s)
Pentosyltransferases/chemistry , Pentosyltransferases/metabolism , Ribonucleosides/metabolism , Trypanosoma brucei brucei/enzymology , Hydrogen-Ion Concentration , Models, Molecular , Protein Conformation , Substrate Specificity
11.
Appl Microbiol Biotechnol ; 102(18): 7805-7820, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30027492

ABSTRACT

Due to their similarity to natural counterparts, nucleic acid derivatives (nucleobases, nucleosides, and nucleotides, among others) are interesting molecules for pharmaceutical, biomedical, or food industries. For this reason, there is increasing worldwide demand for the development of efficient synthetic processes for these compounds. Chemical synthetic methodologies require numerous protection-deprotection steps and often lead to the presence of undesirable by-products or enantiomeric mixtures. These methods also require harsh operating conditions, such as the use of organic solvents and hazard reagents. Conversely, enzymatic production by whole cells or enzymes improves regio-, stereo-, and enantioselectivity and provides an eco-friendly alternative. Because of their essential role in purine and pyrimidine scavenging, enzymes from purine and pyrimidine salvage pathways are valuable candidates for the synthesis of many different nucleic acid components. In recent years, many different enzymes from these routes, such as nucleoside phosphorylases, nucleoside kinases, 2'-deoxyribosyltransferases, phosphoribosyl transferases, or deaminases, have been successfully employed as biocatalysts in the production of nucleobase, nucleoside, or nucleotide analogs. Due to their great activity and stability at extremely high temperatures, the use of enzymes from thermophiles in industrial biocatalysis is gaining momentum. Thermophilic enzymes not only display unique characteristics such as temperature, chemical, and pH stability but also provide many different advantages from an industrial perspective. This mini-review aims to cover the most representative enzymatic approaches for the synthesis of nucleic acid derivatives. In this regard, we provide detailed comments about enzymes involved in crucial steps of purine and pyrimidine salvage pathways in thermophiles, as well as their biological role, biochemical characterization, active site mechanism, and substrate specificity. In addition, the most interesting synthetic examples reported in the literature are also included.


Subject(s)
Enzymes/chemistry , Nucleic Acids/chemistry , Purines/chemistry , Pyrimidines/chemistry , Biocatalysis , Enzyme Stability , Hot Temperature
12.
Appl Microbiol Biotechnol ; 102(16): 6947-6957, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29872887

ABSTRACT

In our search for thermophilic and acid-tolerant nucleoside 2'-deoxyribosyltransferases (NDTs), we found a good candidate in an enzyme encoded by Chroococcidiopsis thermalis PCC 7203 (CtNDT). Biophysical and biochemical characterization revealed CtNDT as a homotetramer endowed with good activity and stability at both high temperatures (50-100 °C) and a wide range of pH values (from 3 to 7). CtNDT recognizes purine bases and their corresponding 2'-deoxynucleosides but is also proficient using cytosine and 2'-deoxycytidine as substrates. These unusual features preclude the strict classification of CtNDT as either a type I or a type II NDT and further suggest that this simple subdivision may need to be updated in the future. Our findings also hint at a possible link between oligomeric state and NDT's substrate specificity. Interestingly from a practical perspective, CtNDT displays high activity (80-100%) in the presence of several water-miscible co-solvents in a proportion of up to 20% and was successfully employed in the enzymatic production of several therapeutic nucleosides such as didanosine, vidarabine, and cytarabine.


Subject(s)
Cyanobacteria/enzymology , Pentosyltransferases , Enzyme Stability , Enzymes, Immobilized/metabolism , Hot Temperature , Pentosyltransferases/biosynthesis , Pentosyltransferases/chemistry , Pentosyltransferases/genetics , Pentosyltransferases/isolation & purification , Solvents/chemistry , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...