Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Nat Mater ; 22(9): 1051-1052, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37644226
2.
Rev Sci Instrum ; 94(3): 034714, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-37012778

ABSTRACT

Here, we describe a custom-designed quasi-optical system continuously operating in the frequency range 220 GHz to 1.1 THz with a temperature range of 5-300 K and magnetic fields up to 9 T capable of polarization rotation in both transmitter and receiver arms at any given frequency within the range through a unique double Martin-Puplett interferometry approach. The system employs focusing lenses to amplify the microwave power at the sample position and recollimate the beam to the transmission branch. The cryostat and split coil magnets are furnished with five optical access ports from all three major directions to the sample sitting on a two-axes rotatable sample holder capable of performing arbitrary rotations with respect to the field direction, enabling broad accessibility to experimental geometries. Initial results from test measurements on antiferromagnetic MnF2 single crystals are included to verify the operation of the system.

3.
Nat Mater ; 21(12): 1403-1411, 2022 12.
Article in English | MEDLINE | ID: mdl-36411348

ABSTRACT

To realize molecular-scale electrical operations beyond the von Neumann bottleneck, new types of multifunctional switches are needed that mimic self-learning or neuromorphic computing by dynamically toggling between multiple operations that depend on their past. Here, we report a molecule that switches from high to low conductance states with massive negative memristive behaviour that depends on the drive speed and number of past switching events, with all the measurements fully modelled using atomistic and analytical models. This dynamic molecular switch emulates synaptic behavior and Pavlovian learning, all within a 2.4-nm-thick layer that is three orders of magnitude thinner than a neuronal synapse. The dynamic molecular switch provides all the fundamental logic gates necessary for deep learning because of its time-domain and voltage-dependent plasticity. The synapse-mimicking multifunctional dynamic molecular switch represents an adaptable molecular-scale hardware operable in solid-state devices, and opens a pathway to simplify dynamic complex electrical operations encoded within a single ultracompact component.


Subject(s)
Electricity
4.
Adv Mater ; 34(26): e2202135, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35546046

ABSTRACT

Controllable single-molecule logic operations will enable development of reliable ultra-minimalistic circuit elements for high-density computing but require stable currents from multiple orthogonal inputs in molecular junctions. Utilizing the two unique adjacent conductive molecular orbitals (MOs) of gated Au/S-(CH2 )3 -Fc-(CH2 )9 -S/Au (Fc = ferrocene) single-electron transistors (≈2 nm), a stable single-electron logic calculator (SELC) is presented, which allows real-time modulation of output current as a function of orthogonal input bias (Vb ) and gate (Vg ) voltages. Reliable and low-voltage (ǀVb ǀ ≤ 80 mV, ǀVg ǀ ≤ 2 V) operations of the SELC depend upon the unambiguous association of current resonances with energy shifts of the MOs (which show an invariable, small energy separation of ≈100 meV) in response to the changes of voltages, which is confirmed by electron-transport calculations. Stable multi-logic operations based on the SELC modulated current conversions between the two resonances and Coulomb blockade regimes are demonstrated via the implementation of all universal 1-input (YES/NOT/PASS_1/PASS_0) and 2-input (AND/XOR/OR/NAND/NOR/INT/XNOR) logic gates.

5.
Nat Commun ; 12(1): 3432, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34103489

ABSTRACT

We present an efficient strategy to modulate tunnelling in molecular junctions by changing the tunnelling decay coefficient, ß, by terminal-atom substitution which avoids altering the molecular backbone. By varying X = H, F, Cl, Br, I in junctions with S(CH2)(10-18)X, current densities (J) increase >4 orders of magnitude, creating molecular conductors via reduction of ß from 0.75 to 0.25 Å-1. Impedance measurements show tripled dielectric constants (εr) with X = I, reduced HOMO-LUMO gaps and tunnelling-barrier heights, and 5-times reduced contact resistance. These effects alone cannot explain the large change in ß. Density-functional theory shows highly localized, X-dependent potential drops at the S(CH2)nX//electrode interface that modifies the tunnelling barrier shape. Commonly-used tunnelling models neglect localized potential drops and changes in εr. Here, we demonstrate experimentally that [Formula: see text], suggesting highly-polarizable terminal-atoms act as charge traps and highlighting the need for new charge transport models that account for dielectric effects in molecular tunnelling junctions.

6.
Adv Sci (Weinh) ; 8(14): e2100055, 2021 07.
Article in English | MEDLINE | ID: mdl-34145786

ABSTRACT

This paper describes the transition from the normal to inverted Marcus region in solid-state tunnel junctions consisting of self-assembled monolayers of benzotetrathiafulvalene (BTTF), and how this transition determines the performance of a molecular diode. Temperature-dependent normalized differential conductance analyses indicate the participation of the HOMO (highest occupied molecular orbital) at large negative bias, which follows typical thermally activated hopping behavior associated with the normal Marcus regime. In contrast, hopping involving the HOMO dominates the mechanism of charge transport at positive bias, yet it is nearly activationless indicating the junction operates in the inverted Marcus region. Thus, within the same junction it is possible to switch between Marcus and inverted Marcus regimes by changing the bias polarity. Consequently, the current only decreases with decreasing temperature at negative bias when hopping is "frozen out," but not at positive bias resulting in a 30-fold increase in the molecular rectification efficiency. These results indicate that the charge transport in the inverted Marcus region is readily accessible in junctions with redox molecules in the weak coupling regime and control over different hopping regimes can be used to improve junction performance.

7.
Nat Mater ; 19(8): 843-848, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32483243

ABSTRACT

To avoid crosstalk and suppress leakage currents in resistive random access memories (RRAMs), a resistive switch and a current rectifier (diode) are usually combined in series in a one diode-one resistor (1D-1R) RRAM. However, this complicates the design of next-generation RRAM, increases the footprint of devices and increases the operating voltage as the potential drops over two consecutive junctions1. Here, we report a molecular tunnel junction based on molecules that provide an unprecedented dual functionality of diode and variable resistor, resulting in a molecular-scale 1D-1R RRAM with a current rectification ratio of 2.5 × 104 and resistive on/off ratio of 6.7 × 103, and a low drive voltage of 0.89 V. The switching relies on dimerization of redox units, resulting in hybridization of molecular orbitals accompanied by directional ion migration. This electric-field-driven molecular switch operating in the tunnelling regime enables a class of molecular devices where multiple electronic functions are preprogrammed inside a single molecular layer with a thickness of only 2 nm.

8.
Science ; 368(6487): 160-165, 2020 04 10.
Article in English | MEDLINE | ID: mdl-32273462

ABSTRACT

Spin-transfer torque and spin Hall effects combined with their reciprocal phenomena, spin pumping and inverse spin Hall effects (ISHEs), enable the reading and control of magnetic moments in spintronics. The direct observation of these effects remains elusive in antiferromagnetic-based devices. We report subterahertz spin pumping at the interface of the uniaxial insulating antiferromagnet manganese difluoride and platinum. The measured ISHE voltage arising from spin-charge conversion in the platinum layer depends on the chirality of the dynamical modes of the antiferromagnet, which is selectively excited and modulated by the handedness of the circularly polarized subterahertz irradiation. Our results open the door to the controlled generation of coherent, pure spin currents at terahertz frequencies.

9.
Rev Sci Instrum ; 90(8): 085106, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31472653

ABSTRACT

This article presents a time-resolved electron paramagnetic resonance spectrometry setup designed to work at frequencies below 20 GHz and temperatures down to 50 mK. The setup consists of an on-chip microstrip resonator (Q < 100) placed in a dilution cryostat located within a superconducting 3D vector magnet. A housemade spin echo circuitry controlled by a microwave network analyzer, a pulse pattern generator, and an oscilloscope connects to the microstrip through a series of copper, stainless steel, and superconducting semirigid coaxial lines which are thermally anchored to the different cooling stages of the fridge by means of power attenuators, circulators, and a cryogenic amplifier. Spin echo experiments were performed at a 0.5-T magnetic field on a spin 1 2 paramagnetic coal marker sample mounted on a 15 GHz microstrip resonator at temperatures ranging from 100 to 800 mK. The results show an increase in echo signal intensity as temperature is decreased until saturation as theoretically expected in reaching 99% spin polarization at 100 mK. Our technique allows tuning of the spin system in the pure-state regime and minimizing dipolar fluctuations, which are the main contribution to decoherence in solid-state samples of single-molecule magnets (SMMs) - molecular spin systems that are currently being tested for applications in quantum computation. The achievement of full spin polarization at 100 mK will allow for coherent control over the time evolution of spin systems without the need for large magnetic fields (commonly used to polarize the dipolar bath at higher temperatures) and high frequencies.

10.
Nanoscale ; 10(8): 3904-3910, 2018 Feb 22.
Article in English | MEDLINE | ID: mdl-29423488

ABSTRACT

Recent experiments demonstrate a temperature control of the electric conduction through a ferrocene-based molecular junction. Here we examine the results in view of determining means to distinguish between transport through single-particle molecular levels or via transport channels split by Coulomb repulsion. Both transport mechanisms are similar in molecular junctions given the similarities between molecular intralevel energies and the charging energy. We propose an experimentally testable way to identify the main transport process. By applying a magnetic field to the molecule, we observe that an interacting theory predicts a shift of the conductance resonances of the molecule whereas in the noninteracting case each resonance is split into two peaks. The interaction model works well in explaining our experimental results obtained in a ferrocene-based single-molecule junction, where the charge degeneracy peaks shift (but do not split) under the action of an applied 7-Tesla magnetic field. This method is useful for a proper characterization of the transport properties of molecular tunnel junctions.

11.
Nat Nanotechnol ; 12(8): 797-803, 2017 08.
Article in English | MEDLINE | ID: mdl-28674457

ABSTRACT

Molecular diodes operating in the tunnelling regime are intrinsically limited to a maximum rectification ratio R of ∼103. To enhance this rectification ratio to values comparable to those of conventional diodes (R ≥ 105) an alternative mechanism of rectification is therefore required. Here, we report a molecular diode with R = 6.3 × 105 based on self-assembled monolayers with Fc-C≡C-Fc (Fc, ferrocenyl) termini. The number of molecules (n(V)) involved in the charge transport changes with the polarity of the applied bias. More specifically, n(V) increases at forward bias because of an attractive electrostatic force between the positively charged Fc units and the negatively charged top electrode, but remains constant at reverse bias when the Fc units are neutral and interact weakly with the positively charged electrode. We successfully model this mechanism using molecular dynamics calculations.

12.
Dalton Trans ; 45(43): 17153-17159, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27775126

ABSTRACT

In this work we present a comparative study of the temperature behavior of charge current in both single-molecule transistors and self-assembled monolayer-based tunnel junctions with symmetrical molecules of alkanethiolates functionalized with a ferrocene (Fc) unit. The Fc unit is separated from the electrodes with two equal alkyl chains of enough length to ensure weak coupling of the Fc unit with the electrodes. These junctions do not rectify charge current and display exponential dependence with temperature with moderate slopes, which can be directly associated to the thermal broadening of the electronic occupation Fermi distribution in the electrodes. The capability to electrically gate the molecular frontier orbital of the Fc (here the highest occupied molecular orbital, HOMO) in the single-molecule transistor, not possible in the two-terminal SAM-based junctions, allows for a detailed comparative between the two classes of junctions. Our findings demonstrate that, although most transport characteristics are equivalent, collective effects arising from interactions between molecules in the self-assembled monolayer greatly affect the energetics of SAM-based junctions, resulting in a bias-independent tunnel current, contrary to the case of the single-molecule junction and as expected from the thermal broadening of the electronic occupation around the Fermi energy in the electrodes.

13.
Nat Commun ; 7: 11595, 2016 05 23.
Article in English | MEDLINE | ID: mdl-27211787

ABSTRACT

Understanding how the mechanism of charge transport through molecular tunnel junctions depends on temperature is crucial to control electronic function in molecular electronic devices. With just a few systems investigated as a function of bias and temperature so far, thermal effects in molecular tunnel junctions remain poorly understood. Here we report a detailed charge transport study of an individual redox-active ferrocene-based molecule over a wide range of temperatures and applied potentials. The results show the temperature dependence of the current to vary strongly as a function of the gate voltage. Specifically, the current across the molecule exponentially increases in the Coulomb blockade regime and decreases at the charge degeneracy points, while remaining temperature-independent at resonance. Our observations can be well accounted for by a formal single-level tunnelling model where the temperature dependence relies on the thermal broadening of the Fermi distributions of the electrons in the leads.

14.
Sci Rep ; 6: 26517, 2016 05 24.
Article in English | MEDLINE | ID: mdl-27216489

ABSTRACT

We present a theoretical analysis aimed at understanding electrical conduction in molecular tunnel junctions. We focus on discussing the validity of coherent versus incoherent theoretical formulations for single-level tunneling to explain experimental results obtained under a wide range of experimental conditions, including measurements in individual molecules connecting the leads of electromigrated single-electron transistors and junctions of self-assembled monolayers (SAM) of molecules sandwiched between two macroscopic contacts. We show that the restriction of transport through a single level in solid state junctions (no solvent) makes coherent and incoherent tunneling formalisms indistinguishable when only one level participates in transport. Similar to Marcus relaxation processes in wet electrochemistry, the thermal broadening of the Fermi distribution describing the electronic occupation energies in the electrodes accounts for the exponential dependence of the tunneling current on temperature. We demonstrate that a single-level tunnel model satisfactorily explains experimental results obtained in three different molecular junctions (both single-molecule and SAM-based) formed by ferrocene-based molecules. Among other things, we use the model to map the electrostatic potential profile in EGaIn-based SAM junctions in which the ferrocene unit is placed at different positions within the molecule, and we find that electrical screening gives rise to a strongly non-linear profile across the junction.

15.
Nat Commun ; 6: 6324, 2015 Mar 02.
Article in English | MEDLINE | ID: mdl-25727708

ABSTRACT

A challenge in molecular electronics is to control the strength of the molecule-electrode coupling to optimize device performance. Here we show that non-covalent contacts between the active molecular component (in this case, ferrocenyl of a ferrocenyl-alkanethiol self-assembled monolayer (SAM)) and the electrodes allow for robust coupling with minimal energy broadening of the molecular level, precisely what is required to maximize the rectification ratio of a molecular diode. In contrast, strong chemisorbed contacts through the ferrocenyl result in large energy broadening, leakage currents and poor device performance. By gradually shifting the ferrocenyl from the top to the bottom of the SAM, we map the shape of the electrostatic potential profile across the molecules and we are able to control the direction of rectification by tuning the ferrocenyl-electrode coupling parameters. Our demonstrated control of the molecule-electrode coupling is important for rational design of materials that rely on charge transport across organic-inorganic interfaces.

16.
Phys Rev Lett ; 113(8): 087201, 2014 Aug 22.
Article in English | MEDLINE | ID: mdl-25192120

ABSTRACT

We report on a single-molecule magnet where the spatial arrangement of three manganese ions and their spin-orbit coupling tensor orientations result in threefold angular modulations of the magnetization tunneling rates and quantum interference patterns that mimic the form of a three-leaf clover. Although expected in all quantum tunneling of magnetization resonances for a trigonal molecular symmetry, the threefold modulation only appears at resonances for which a longitudinal magnetic field is applied (i.e., resonance numbers |k|>0). A sixfold transverse field modulation observed at resonance k = 0 manifests as a direct consequence of a threefold corrugation of the spin-orbit coupling energy landscape, creating an effective longitudinal field which varies the resonance condition in the presence of a transverse field. The observations allow for an association between the trigonal distortion of the local spin-orbit interactions and the spatial disposition of the constituent ions, a finding that can be extrapolated to other systems where spin-orbit coupling plays a significant role.

17.
Inorg Chem ; 53(11): 5423-8, 2014 Jun 02.
Article in English | MEDLINE | ID: mdl-24824101

ABSTRACT

A novel water-stable (t1/2 ∼ 6.8 days) mononuclear manganese(IV) complex of a hexacoordinating non-Schiff-base ligand (H4L) with N2O4-donor atoms has been synthesized and characterized crystallographically. High-frequency electron paramagnetic resonance experiments performed on a single crystal reveal a manganese(IV) ion with an S = 3/2 ground spin state that displays a large single-ion anisotropy, setting the record of mononuclear manganese(IV) complexes reported so far. In addition, spin-echo experiments reveal a spin-spin relaxation time T2 ∼ 500 ns.


Subject(s)
Manganese Compounds/chemistry , Nitrogen Oxides/chemistry , Water , Crystallography , Ligands , Models, Molecular , Molecular Structure
18.
Inorg Chem ; 50(16): 7367-9, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21751785

ABSTRACT

The synthesis, structure, and magnetic properties of a ligand-modified Mn(4) dicubane single-molecule magnet (SMM), [Mn(4)(Bet)(4)(mdea)(2)(mdeaH)(2)](BPh(4))(4), are presented, where the cationic SMM units are significantly separated from neighboring molecules in the crystal lattice. There are no cocrystallized solvate molecules, making it an ideal candidate for single-crystal magnetization hysteresis and high-frequency electron paramagnetic resonance studies. Increased control over intermolecular interactions in such materials is a crucial factor in the future application of SMMs.

19.
Inorg Chem ; 49(13): 5780-2, 2010 Jul 05.
Article in English | MEDLINE | ID: mdl-20524687

ABSTRACT

Low-temperature heat capacity and oriented single-crystal field-cooled and zero-field-cooled magnetization data for the single-molecule magnet [Ni(hmp)(dmb)Cl](4) are presented that indicate the presence of ferromagnetic ordering at approximately 300 mK, which has little effect on the magnetization relaxation rates.

20.
Dalton Trans ; 39(20): 4693-707, 2010 May 28.
Article in English | MEDLINE | ID: mdl-20405069

ABSTRACT

This perspectives article takes a broad view of the current understanding of magnetic bistability and magnetic quantum tunneling in single-molecule magnets (SMMs), focusing on three families of relatively simple, low-nuclearity transition metal clusters: spin S = 4 Ni(II)(4), Mn(III)(3) (S = 2 and 6) and Mn(III)(6) (S = 4 and 12). The Mn(III) complexes are related by the fact that they contain triangular Mn(III)(3) units in which the exchange may be switched from antiferromagnetic to ferromagnetic without significantly altering the coordination around the Mn(III) centers, thereby leaving the single-ion physics more-or-less unaltered. This allows for a detailed and systematic study of the way in which the individual-ion anisotropies project onto the molecular spin ground state in otherwise identical low- and high-spin molecules, thus providing unique insights into the key factors that control the quantum dynamics of SMMs, namely: (i) the height of the kinetic barrier to magnetization relaxation; and (ii) the transverse interactions that cause tunneling through this barrier. Numerical calculations are supported by an unprecedented experimental data set (17 different compounds), including very detailed spectroscopic information obtained from high-frequency electron paramagnetic resonance and low-temperature hysteresis measurements. Comparisons are made between the giant spin and multi-spin phenomenologies. The giant spin approach assumes the ground state spin, S, to be exact, enabling implementation of simple anisotropy projection techniques. This methodology provides a basic understanding of the concept of anisotropy dilution whereby the cluster anisotropy decreases as the total spin increases, resulting in a barrier that depends weakly on S. This partly explains why the record barrier for a SMM (86 K for Mn(6)) has barely increased in the 15 years since the first studies of Mn(12)-acetate, and why the tiny Mn(3) molecule can have a barrier approaching 60% of this record. Ultimately, the giant spin approach fails to capture all of the key physics, although it works remarkably well for the purely ferromagnetic cases. Nevertheless, diagonalization of the multi-spin Hamiltonian matrix is necessary in order to fully capture the interplay between exchange and local anisotropy, and the resultant spin-state mixing which ultimately gives rise to the tunneling matrix elements in the high symmetry SMMs (ferromagnetic Mn(3) and Ni(4)). The simplicity (low-nuclearity, high-symmetry, weak disorder, etc.) of the molecules highlighted in this study proves to be of crucial importance. Not only that, these simple molecules may be considered among the best SMMs: Mn(6) possesses the record anisotropy barrier, and Mn(3) is the first SMM to exhibit quantum tunneling selection rules that reflect the intrinsic symmetry of the molecule.

SELECTION OF CITATIONS
SEARCH DETAIL
...