Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 66(7): 4888-4909, 2023 04 13.
Article in English | MEDLINE | ID: mdl-36940470

ABSTRACT

Immune activating agents represent a valuable class of therapeutics for the treatment of cancer. An area of active research is expanding the types of these therapeutics that are available to patients via targeting new biological mechanisms. Hematopoietic progenitor kinase 1 (HPK1) is a negative regulator of immune signaling and a target of high interest for the treatment of cancer. Herein, we present the discovery and optimization of novel amino-6-aryl pyrrolopyrimidine inhibitors of HPK1 starting from hits identified via virtual screening. Key components of this discovery effort were structure-based drug design aided by analyses of normalized B-factors and optimization of lipophilic efficiency.


Subject(s)
Protein Serine-Threonine Kinases , Signal Transduction , Humans , Protein Serine-Threonine Kinases/metabolism , Pyrroles/pharmacology
2.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Article in English | MEDLINE | ID: mdl-34244445

ABSTRACT

The development of a versatile platform for the synthesis of 1,2-difunctionalized bicyclo[1.1.1]pentanes to potentially mimic ortho/meta-substituted arenes is described. The syntheses of useful building blocks bearing alcohol, amine, and carboxylic acid functional handles have been achieved from a simple common intermediate. Several ortho- and meta-substituted benzene analogs, as well as simple molecular matched pairs, have also been prepared using this platform. The results of in-depth ADME (absorption, distribution, metabolism, and excretion) investigations of these systems are presented, as well as computational studies which validate the ortho- or meta-character of these bioisosteres.


Subject(s)
Hydrocarbons, Aromatic/chemistry , Pentanes/chemistry , Biological Assay , Crystallography, X-Ray , Hepatocytes/metabolism , Humans , Inhibitory Concentration 50 , Pentanes/chemical synthesis , Stereoisomerism
3.
Nature ; 573(7774): 398-402, 2019 09.
Article in English | MEDLINE | ID: mdl-31501569

ABSTRACT

Hindered ethers are of high value for various applications; however, they remain an underexplored area of chemical space because they are difficult to synthesize via conventional reactions1,2. Such motifs are highly coveted in medicinal chemistry, because extensive substitution about the ether bond prevents unwanted metabolic processes that can lead to rapid degradation in vivo. Here we report a simple route towards the synthesis of hindered ethers, in which electrochemical oxidation is used to liberate high-energy carbocations from simple carboxylic acids. These reactive carbocation intermediates, which are generated with low electrochemical potentials, capture an alcohol donor under non-acidic conditions; this enables the formation of a range of ethers (more than 80 have been prepared here) that would otherwise be difficult to access. The carbocations can also be intercepted by simple nucleophiles, leading to the formation of hindered alcohols and even alkyl fluorides. This method was evaluated for its ability to circumvent the synthetic bottlenecks encountered in the preparation of 12 chemical scaffolds, leading to higher yields of the required products, in addition to substantial reductions in the number of steps and the amount of labour required to prepare them. The use of molecular probes and the results of kinetic studies support the proposed mechanism and the role of additives under the conditions examined. The reaction manifold that we report here demonstrates the power of electrochemistry to access highly reactive intermediates under mild conditions and, in turn, the substantial improvements in efficiency that can be achieved with these otherwise-inaccessible intermediates.


Subject(s)
Carbon/chemistry , Chemistry Techniques, Synthetic , Chemistry, Pharmaceutical/methods , Ethers/chemical synthesis , Carboxylic Acids/chemistry , Electrochemistry
4.
J Am Chem Soc ; 139(20): 6819-6822, 2017 05 24.
Article in English | MEDLINE | ID: mdl-28463562

ABSTRACT

Herein we describe concise enantioselective chemical syntheses of (-)-viridin and (-)-viridiol. Our convergent approach couples two achiral fragments of similar complexity and employs an enantioselective intramolecular Heck reaction to set the absolute stereochemical configuration of an all-carbon quaternary stereocenter. To complete the syntheses of these base- and nucleophile-sensitive natural products, we conduct carefully orchestrated site- and diastereoselective oxidations and other transformations. Our work is the first to generate these targets as single enantiomers.


Subject(s)
Androstenediols/chemical synthesis , Androstenes/chemical synthesis , Bacteriocins/chemical synthesis , Androstenediols/chemistry , Androstenes/chemistry , Bacteriocins/chemistry , Molecular Structure , Stereoisomerism
5.
J Am Chem Soc ; 135(33): 12188-91, 2013 Aug 21.
Article in English | MEDLINE | ID: mdl-23855814

ABSTRACT

Herein, we describe a two-step method for the cyclopentannulation of conjugated enones using methyl 3-(tert-butyldimethylsilyloxy)-2-diazo-3-butenoate (1) as a bifunctional reagent. The enol silane and stabilized diazoalkane functionalities are exploited independently in sequential Mukaiyama-Michael and diastereoselective α,α'-diketone coupling. Di-, tri-, and tetrasubstituted enones are amenable to annulation under this protocol. Overall, this chemistry is an effective surrogate for a substituted "acetone 1,3-dipole".

6.
J Am Chem Soc ; 133(10): 3292-5, 2011 Mar 16.
Article in English | MEDLINE | ID: mdl-21341741

ABSTRACT

A direct functionalization of a variety of quinones with several boronic acids has been developed. This scalable reaction proceeds readily at room temperature in an open flask using inexpensive reagents: catalytic silver(I) nitrate in the presence of a persulfate co-oxidant. The scope with respect to quinones is broad, with a variety of alkyl- and arylboronic acids undergoing efficient cross-coupling. The mechanism is presumed to proceed through a nucleophilic radical addition to the quinone with in situ reoxidation of the resulting dihydroquinone. This method has been applied to complex substrates, including a steroid derivative and a farnesyl natural product.


Subject(s)
Boronic Acids/chemistry , Quinones/chemistry , Biological Products/chemical synthesis , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL
...