Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol In Vitro ; 66: 104831, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32198056

ABSTRACT

Recently, several non-animal approaches contributing to the identification of skin sensitisation hazard have been introduced. Their validation and acceptance has largely been directed towards regulatory classification. Considering the driving force for replacement of in vivo tests centred on cosmetics, it is reasonable to ask how well the new approaches perform in this respect. In the present study, 219 substances, largely cosmetic raw materials (including dyes, preservatives and fragrances), have been evaluated in our Defined Approach integrating a stacking meta model (version 5), incorporating the individual outcomes of 3 in vitro validated methods (Direct Peptide Reactivity Assay, Keratinosens™, U-SENS™), 2 in silico tools (TIMES SS, TOXTREE) and physicochemical parameters (volatility, pH). Stacking meta model outcomes were compared with existing local lymph node assay (LLNA) data. Non-sensitisers comprised 68/219; 86 were weak/moderate and 65 were stronger sensitisers. The model version revision demonstrate the gain to discriminate sensitizers to non-sensitiser when the in silico TIMES model is incorporated as input parameter. The 85% to 91% accuracy for the cosmetics categories, indicates the stacking meta model offers value for the next generation risk assessment framework. These results pinpoint the power of the stacking meta model relying on a confidence based on the probability given in any individual prediction.


Subject(s)
Cosmetics/toxicity , Haptens/toxicity , Models, Biological , Animals , Computer Simulation , Dermatitis, Allergic Contact , Humans , Skin Tests
2.
Toxicol In Vitro ; 60: 134-143, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31100378

ABSTRACT

Skin sensitization is an important toxicological endpoint in the safety assessment of chemicals and cosmetic ingredients. Driven by ethical considerations and European Union (EU) legislation, its assessment has progressed from the reliance on traditional animal models to the use of non-animal test methods. It is generally accepted that the assessment of skin sensitization requires the integration of various non-animal test methods in defined approaches (DAs), to cover the mechanistic key events of the adverse outcomes pathway (AOP) (OECD, 2014). Several case studies for DAs predicting skin sensitization hazard or potency have been submitted to the OECD, including a stacking meta-model developed by L'Oréal Research & Innovation (OECD, 2017b; Del Bufalo et al., 2018; Noçairi et al., 2016). The present study evaluated the predictive performance of the defined approach integrating a stacking meta-model incorporating in silico, in chemico and in vitro assays, using the Cosmetics Europe (CE) skin sensitization database. Based on the optimized prediction cut-offs, the defined approach provided a hazard prediction for 97 chemicals with a sensitivity of 91%, a specificity of 76% and accuracy of 86% (kappa of 0.67) against human skin sensitization hazard data and a sensitivity of 85%, specificity of 91% and accuracy of 87% (kappa of 0.67) against Local Lymph Node Assay (LLNA) hazard data. A comparison of the in vivo LLNA with human hazard data for the same 97 chemicals showed a sensitivity of 92%, specificity of 51% and accuracy of 78% (kappa of 0.48). Thus, the defined approach showed a higher degree of concordance, as compared to the LLNA for predicting human skin sensitization hazard. Moreover, a comparison with the six DAs selected for evaluation of their predictivity in the study by Kleinstreuer et al. (2018) showed a similar high accuracy of 86% for 97 overlapping chemicals. The next step will be an independent evaluation of the DA for its integration in the performances based test guidelines (PBTG) for skin sensitization.


Subject(s)
Haptens/toxicity , Models, Biological , Animal Testing Alternatives , Computer Simulation , Databases, Factual , Dermatitis, Allergic Contact , Humans
3.
ALTEX ; 35(2): 179-192, 2018.
Article in English | MEDLINE | ID: mdl-28968481

ABSTRACT

Significant progress has been made in the development and validation of non-animal test methods for skin sensitization assessment. At present, three of the four key events of the Adverse Outcome Pathway (AOP) are assessable by OECD-accepted in vitro methods. The fourth key event describes the immunological response in the draining lymph node where activated dendritic cells present major histocompatibility complex-bound chemically modified peptides to naive T cells, thereby priming the proliferation of antigen-specific T cells. Despite substantial efforts, modelling and assessing this adaptive immune response to sensitizers with in vitro T cell assays still represents a challenge. The Cosmetics Europe Skin Tolerance Task Force organized a workshop, bringing together academic researchers, method developers, industry representatives and regulatory stakeholders to review the scientific status of T cell-based assays, foster a mutual scientific understanding and conceive new options to assess T cell activation. Participants agreed that current T cell assays have come a long way in predicting immunogenicity, but that further investment and collaboration is required to simplify assays, optimize their sensitivity, better define human donor-to-donor variability and evaluate their value to predict sensitizer potency. Furthermore, the potential role of T cell assays in AOP-based testing strategies and subsequent safety assessment concepts for cosmetic ingredients was discussed. It was agreed that it is currently difficult to anticipate uses of T cell assay data for safety assessment and concluded that experience from case studies on real-life risk assessment scenarios is needed to further consider the usefulness of assessing the fourth AOP key event.


Subject(s)
Allergens/analysis , Biological Assay , Cosmetics/analysis , Lymphocyte Activation/drug effects , T-Lymphocytes , Adverse Outcome Pathways , Consumer Product Safety , Humans , In Vitro Techniques/methods , In Vitro Techniques/standards , Skin/drug effects , Skin Tests/standards , Skin Tests/trends
4.
Eur J Immunol ; 47(7): 1171-1180, 2017 07.
Article in English | MEDLINE | ID: mdl-28440548

ABSTRACT

Allergic contact dermatitis is a primarily T-cell-mediated inflammatory skin disease induced by exposure to small molecular-weight haptens, which covalently bind to proteins. The abundance of cutaneous T cells that recognize CD1a antigen-presenting molecules raises the possibility that MHC-independent antigen presentation may be relevant in some hapten-driven immune responses. Here we examine the ability of contact sensitizers to influence CD1-restricted immunity. Exposure of human antigen-presenting cells such as monocyte-derived dendritic cells and THP-1 cells to the prototypical contact sensitizer dinitrochlorobenzene potentiated the response of CD1a- and CD1d-autoreactive T cells, which released a vast array of cytokines in a CD1- and TCR-dependent manner. The potentiating effects of dinitrochlorobenzene depended upon newly synthesized CD1 molecules and the presence of endogenous stimulatory lipids. Further examination of a broad panel of contact sensitizers revealed 1,4-benzoquinone, resorcinol, isoeugenol, and cinnamaldehyde to activate the same type of CD1-restricted responses. These findings provide a basis for the antigen-specific activation of skin-associated CD1-restricted T cells by small molecules and may have implications for contact sensitizer-induced inflammatory skin diseases.


Subject(s)
Antigens, CD1/immunology , Dermatitis, Contact/immunology , Natural Killer T-Cells/immunology , T-Lymphocytes/immunology , Acrolein/analogs & derivatives , Acrolein/pharmacology , Antigen Presentation , Benzoquinones/pharmacology , Cell Line , Dendritic Cells/immunology , Dinitrochlorobenzene/pharmacology , Eugenol/analogs & derivatives , Eugenol/pharmacology , Humans , Lipids/immunology , Lymphocyte Activation , Monocytes/drug effects , Resorcinols/pharmacology , Skin/immunology
5.
Arch Dermatol Res ; 306(8): 763-8, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25038621

ABSTRACT

Malassezia spp. are saprophyte yeasts involved in skin diseases with different degrees of severity. The aim of our study was to analyze the response of human epidermal keratinocytes to Malassezia globosa and restricta strains evaluating the host defence mechanisms induced by Malassezia spp. colonization. Our results showed a different modulation of the inflammatory and immunomodulatory cytokine pathways obtained with the different strains of Malassezia tested. In addition, this expression is altered by blocking the TLR2 receptor. In comparison with M. furfur, M. globosa and restricta displayed an unexpected and striking cytotoxicity on keratinocytes. The differences observed could be related to the different modalities of interaction between keratinocytes and Malassezia strains, but also to their growth condition. Taken together, these results indicate that M. globosa or M. restricta colonization exert a different control on the cytokine inflammatory response activated in the human keratinocyte in which TLR2 might be involved. M. globosa and M. restricta may play a synergistic role in the exacerbation of skin diseases in which both are found.


Subject(s)
Dermatomycoses/immunology , Dermatomycoses/microbiology , Keratinocytes/immunology , Keratinocytes/microbiology , Malassezia/growth & development , Apoptosis , Cells, Cultured , Cytokines/metabolism , Host-Pathogen Interactions , Humans , Inflammation Mediators/immunology , Toll-Like Receptor 2/immunology
6.
Toxicol Appl Pharmacol ; 256(1): 35-43, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21807015

ABSTRACT

For the effective induction of a hapten-specific T cell immune response toward contact sensitizers, in addition to covalent-modification of skin proteins, the redox and inflammatory statuses of activated dendritic cells are crucial. The aim of this study was to better understand how sensitizers modulate an inflammatory response through cytokines production and COX metabolism cascade. To address this purpose, we used the human monocytic-like U-937 cell line differentiated by phorbol myristate acetate (PMA) and investigated the effect of 6 contact sensitizers (DNCB, PPD, hydroquinone, propyl gallate, cinnamaldehyde and eugenol) and 3 non sensitizers (lactic acid, glycerol and tween 20) on the production of pro-inflammatory cytokines (IL-1ß and TNF-α) and on the arachidonic acid metabolic profile after bacterial lipopolysaccharide (LPS) stimulation. Our results showed that among the tested molecules, all sensitizers specifically prevent the production of PMA/LPS-induced COX-2 metabolites (PGE(2,) TxB(2) and PGD(2)), eugenol and cinnamaldehyde inhibiting also the production of IL-1ß and TNF-α. We further demonstrated that there is no unique PGE(2) inhibition mechanism: while the release of arachidonic acid (AA) from membrane phospholipids does not appear do be a target of modulation, COX-2 expression and/or COX-2 enzymatic activity are the major steps of prostaglandin synthesis that are inhibited by sensitizers. Altogether these results add a new insight into the multiple biochemical effects described for sensitizers.


Subject(s)
Arachidonic Acid/metabolism , Cell Differentiation/drug effects , Cell Differentiation/physiology , Haptens/physiology , Lipopolysaccharides/toxicity , Monocytes/metabolism , Tetradecanoylphorbol Acetate/toxicity , Humans , Inflammation Mediators/metabolism , Inflammation Mediators/toxicity , Macrophage Activation/drug effects , Monocytes/drug effects , U937 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...