Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Membranes (Basel) ; 12(12)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36557141

ABSTRACT

Considering the important role that wastewater reuse plays in the water cycle and in the current water scenario immersed in a severe drought, the search for technologies that allow obtaining quality water for reuse is increasingly relevant. In this sense, the membrane biological reactor (MBR) is an alternative to traditional activated sludge systems, in which the separation of biomass and treatment water is carried out by membrane filtration instead of decantation. This study made it possible to confirm the presence of emerging pollutants in the wastewater entering the WWTPs under study, to study the behavior and performance of MBR systems with hollow fiber membranes and flat membranes in obtaining reclaimed wastewater for subsequent reuse, and to compare it with the degree of elimination obtained in conventional biological treatment. It has been demonstrated that this technology is almost 100% effective in the elimination of nutrients, organic matter, pathogens, organic micropollutants, metals, etc., and has achieved different percentages of success in eliminating emerging pollutants depending on their nature: 35% in insecticides and herbicides, 45% in anxiolytics, psychiatric drugs, and industrial disinfectants, 75% in antibiotics, and around 100% in analgesics, anti-inflammatory drugs, and hormones. It has also contributed to the establishment of monitoring protocols for emerging pollutants in the WWTPs under study and to the evaluation of their risks, as well as the development and implementation of advanced regeneration systems that are economically favorable for increasing the quality of WWTP effluents for their reuse.

2.
Sensors (Basel) ; 20(15)2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32759713

ABSTRACT

The proposed methodology for optimizing energy efficiency, based on good management of the aeration process through the implementation of an appropriate control strategy, achieved reductions of more than 40% in energy consumption at the San Pedro del Pinatar Wastewater Treatment Plant (WWTP) (Murcia, Spain). Phases I and II of this methodology managed to reduce the oxygen needs of the microorganisms in the biological system, optimize the efficiency of oxygen transfer to the biological reactor and redesign the installation to correct abnormal energy loss situations. In addition, we established the basis for Phase III, which implemented a control strategy to achieve stable values close to the setpoints of the fundamental operating parameters of the aeration process. The control system is based on the measurements recorded by strategically installed sensors and mathematical algorithms based on models, achieving an expert adaptive-predictive system that regulates aeration both in the biological stage by activated sludge and the aeration of the installed ultrafiltration membrane system. The objectives were: (i) to achieve automatic execution of the best management strategy; (ii) to reduce the energy demand; (iii) to improve the operation and stability of the process; (iv) to reduce operating costs; and (v) to contribute to the fulfillment of the sustainable development objectives.

SELECTION OF CITATIONS
SEARCH DETAIL
...