Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Carbohydr Polym ; 346: 122640, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39245504

ABSTRACT

Chitosan chemical functionalization is a powerful tool to provide novel materials for additive manufacturing strategies. The main aim of this study was the employment of computer-aided wet spinning (CAWS) for the first time to design and fabricate carboxymethyl chitosan (CMCS) scaffolds. For this purpose, the synthesis of a chitosan derivative with a high degree of O-substitution (1.07) and water soluble in a large pH range allowed the fabrication of scaffolds with a 3D interconnected porous structure. In particular, the developed scaffolds were composed of CMCS fibers with a small diameter (< 60 µm) and a hollow structure due to a fast non solvent-induced coagulation. Zn2+ ionotropic crosslinking endowed the CMCS scaffolds with stability in aqueous solutions, pH-sensitive water uptake capability, and antimicrobial activity against Escherichia coli and Staphylococcus aureus. In addition, post-printing functionalization through collagen grafting resulted in a decreased stiffness (1.6 ± 0.3 kPa) and a higher elongation at break (101 ± 9 %) of CMCS scaffolds, as well as in their improved ability to support in vitro fibroblast viability and wound healing process. The obtained results encourage therefore further investigation of the developed scaffolds as antimicrobial wound dressing hydrogels for skin regeneration.


Subject(s)
Anti-Bacterial Agents , Bandages , Chitosan , Escherichia coli , Staphylococcus aureus , Tissue Scaffolds , Wound Healing , Chitosan/chemistry , Chitosan/analogs & derivatives , Chitosan/pharmacology , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Wound Healing/drug effects , Tissue Scaffolds/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Animals , Mice , Fibroblasts/drug effects , Porosity , Cell Survival/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Cross-Linking Reagents/chemistry , Humans
SELECTION OF CITATIONS
SEARCH DETAIL