Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(18): eadj8042, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38691608

ABSTRACT

Overactivation of the transforming growth factor-ß (TGFß) signaling in Duchenne muscular dystrophy (DMD) is a major hallmark of disease progression, leading to fibrosis and muscle dysfunction. Here, we investigated the role of SETDB1 (SET domain, bifurcated 1), a histone lysine methyltransferase involved in muscle differentiation. Our data show that, following TGFß induction, SETDB1 accumulates in the nuclei of healthy myotubes while being already present in the nuclei of DMD myotubes where TGFß signaling is constitutively activated. Transcriptomics revealed that depletion of SETDB1 in DMD myotubes leads to down-regulation of TGFß target genes coding for secreted factors involved in extracellular matrix remodeling and inflammation. Consequently, SETDB1 silencing in DMD myotubes abrogates the deleterious effect of their secretome on myoblast differentiation by impairing myoblast pro-fibrotic response. Our findings indicate that SETDB1 potentiates the TGFß-driven fibrotic response in DMD muscles, providing an additional axis for therapeutic intervention.


Subject(s)
Histone-Lysine N-Methyltransferase , Muscle Fibers, Skeletal , Muscular Dystrophy, Duchenne , Signal Transduction , Transforming Growth Factor beta , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Transforming Growth Factor beta/metabolism , Humans , Animals , Cell Differentiation , Mice , Myoblasts/metabolism , Fibrosis , Gene Expression Regulation
2.
iScience ; 26(8): 107386, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37559904

ABSTRACT

The major lysine methyltransferase (KMT) Setdb1 is essential for self-renewal and viability of mouse embryonic stem cells (mESCs). Setdb1 was primarily known to methylate the lysine 9 of histone 3 (H3K9) in the nucleus, where it regulates chromatin functions. However, Setdb1 is also massively localized in the cytoplasm, including in mESCs, where its role remains elusive. Here, we show that the cytoplasmic Setdb1 (cSetdb1) is essential for the survival of mESCs. Yeast two-hybrid analysis revealed that cSetdb1 interacts with several regulators of mRNA stability and protein translation machinery, such as the ESCs-specific E3 ubiquitin ligase and mRNA silencer Trim71/Lin41. We found that cSetdb1 is required for the integrity of Trim71 complex(es) involved in mRNA metabolism and translation. cSetdb1 modulates the abundance of mRNAs and the rate of newly synthesized proteins. Altogether, our data uncovered the cytoplasmic post-transcriptional regulation of gene expression mediated by a key epigenetic regulator.

3.
Front Endocrinol (Lausanne) ; 13: 949097, 2022.
Article in English | MEDLINE | ID: mdl-35992129

ABSTRACT

Pancreatic beta cell response to glucose is critical for the maintenance of normoglycemia. A strong transcriptional response was classically described in rodent models but, interestingly, not in human cells. In this study, we exposed human pancreatic beta cells to an increased concentration of glucose and analysed at a global level the mRNAs steady state levels and their translationalability. Polysome profiling analysis showed an early acute increase in protein synthesis and a specific translation regulation of more than 400 mRNAs, independently of their transcriptional regulation. We clustered the co-regulated mRNAs according to their behaviour in translation in response to glucose and discovered common structural and sequence mRNA features. Among them mTOR- and eIF2-sensitive elements have a predominant role to increase mostly the translation of mRNAs encoding for proteins of the translational machinery. Furthermore, we show that mTOR and eIF2α pathways are independently regulated in response to glucose, participating to a translational reshaping to adapt beta cell metabolism. The early acute increase in the translation machinery components prepare the beta cell for further protein demand due to glucose-mediated metabolism changes.


Subject(s)
Eukaryotic Initiation Factor-2 , Insulin-Secreting Cells , Blood Glucose/metabolism , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Glucose/metabolism , Glucose/pharmacology , Humans , Insulin-Secreting Cells/metabolism , Protein Biosynthesis , RNA, Messenger/genetics , RNA, Messenger/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
4.
Dev Cell ; 57(8): 1037-1052.e8, 2022 04 25.
Article in English | MEDLINE | ID: mdl-35429435

ABSTRACT

Polycomb repressive complex 2 (PRC2) maintains transcriptionally silent genes in a repressed state via deposition of histone H3K27-trimethyl (me3) marks. PRC2 has also been implicated in silencing transposable elements (TEs), yet how PRC2 is targeted to TEs remains unclear. To address this question, we identified proteins that physically interact with the Paramecium enhancer-of-zeste Ezl1 enzyme, which catalyzes H3K9me3 and H3K27me3 deposition at TEs. We show that the Paramecium PRC2 core complex comprises four subunits, each required in vivo for catalytic activity. We also identify PRC2 cofactors, including the RNA interference (RNAi) effector Ptiwi09, which are necessary to target H3K9me3 and H3K27me3 to TEs. We find that the physical interaction between PRC2 and the RNAi pathway is mediated by a RING finger protein and that small RNA recruitment of PRC2 to TEs is analogous to the small RNA recruitment of H3K9 methylation SU(VAR)3-9 enzymes.


Subject(s)
Paramecium , Polycomb Repressive Complex 2 , DNA Transposable Elements/genetics , Histones/metabolism , Paramecium/genetics , Paramecium/metabolism , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , RNA
5.
Nucleic Acids Res ; 50(8): 4389-4413, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35474385

ABSTRACT

Imbalance in the finely orchestrated system of chromatin-modifying enzymes is a hallmark of many pathologies such as cancers, since causing the affection of the epigenome and transcriptional reprogramming. Here, we demonstrate that a loss-of-function mutation (LOF) of the major histone lysine methyltransferase SETDB1 possessing oncogenic activity in lung cancer cells leads to broad changes in the overall architecture and mechanical properties of the nucleus through genome-wide redistribution of heterochromatin, which perturbs chromatin spatial compartmentalization. Together with the enforced activation of the epithelial expression program, cytoskeleton remodeling, reduced proliferation rate and restricted cellular migration, this leads to the reversed oncogenic potential of lung adenocarcinoma cells. These results emphasize an essential role of chromatin architecture in the determination of oncogenic programs and illustrate a relationship between gene expression, epigenome, 3D genome and nuclear mechanics.


Subject(s)
Chromatin , Lung Neoplasms , Humans , Chromatin/genetics , Epigenome , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Heterochromatin , Phenotype , Lung Neoplasms/genetics
6.
Nat Commun ; 13(1): 16, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013230

ABSTRACT

Primary microcephaly and megalencephaly are severe brain malformations defined by reduced and increased brain size, respectively. Whether these two pathologies arise from related alterations at the molecular level is unclear. Microcephaly has been largely associated with centrosomal defects, leading to cell death. Here, we investigate the consequences of WDR81 loss of function, which causes severe microcephaly in patients. We show that WDR81 regulates endosomal trafficking of EGFR and that loss of function leads to reduced MAP kinase pathway activation. Mouse radial glial progenitor cells knocked-out for WDR81 exhibit reduced proliferation rate, subsequently leading to reduced brain size. These proliferation defects are rescued in vivo by expressing a megalencephaly-causing mutant form of Cyclin D2. Our results identify the endosomal machinery as an important regulator of proliferation rates and brain growth, demonstrating that microcephaly and megalencephaly can be caused by opposite effects on the proliferation rate of radial glial progenitors.


Subject(s)
Cell Proliferation , Microcephaly , Nerve Tissue Proteins/metabolism , Neural Stem Cells/metabolism , Transport Vesicles , Animals , Brain/embryology , Brain/metabolism , Cells, Cultured , Endosomes/metabolism , Green Fluorescent Proteins/metabolism , Humans , MAP Kinase Signaling System , Megalencephaly/etiology , Megalencephaly/metabolism , Megalencephaly/pathology , Mice , Microcephaly/etiology , Microcephaly/metabolism , Microcephaly/pathology , Nervous System Malformations/etiology , Nervous System Malformations/metabolism , Nervous System Malformations/pathology , Neuroglia/metabolism , Protein Transport/physiology , Transport Vesicles/metabolism , Transport Vesicles/pathology
7.
J Biol Chem ; 294(35): 12992-13005, 2019 08 30.
Article in English | MEDLINE | ID: mdl-31296571

ABSTRACT

Although Merlin's function as a tumor suppressor and regulator of mitogenic signaling networks such as the Ras/rac, Akt, and Hippo pathways is well-documented, in mammals as well as in insects, its role during cell cycle progression remains unclear. In this study, using a combination of approaches, including FACS analysis, time-lapse imaging, immunofluorescence microscopy, and co-immunoprecipitation, we show that Ser-518 of Merlin is a substrate of the Aurora protein kinase A during mitosis and that its phosphorylation facilitates the phosphorylation of a newly discovered site, Thr-581. We found that the expression in HeLa cells of a Merlin variant that is phosphorylation-defective on both sites leads to a defect in centrosomes and mitotic spindles positioning during metaphase and delays the transition from metaphase to anaphase. We also show that the dual mitotic phosphorylation not only reduces Merlin binding to microtubules but also timely modulates ezrin interaction with the cytoskeleton. Finally, we identify several point mutants of Merlin associated with neurofibromatosis type 2 that display an aberrant phosphorylation profile along with defective α-tubulin-binding properties. Altogether, our findings of an Aurora A-mediated interaction of Merlin with α-tubulin and ezrin suggest a potential role for Merlin in cell cycle progression.


Subject(s)
Aurora Kinase A/metabolism , Mitosis , Neurofibromin 2/metabolism , Aurora Kinase A/antagonists & inhibitors , Benzazepines/pharmacology , HEK293 Cells , HeLa Cells , Humans , Mitosis/drug effects , Mutation , Neurofibromin 2/antagonists & inhibitors , Neurofibromin 2/genetics , Nocodazole/pharmacology , Phosphorylation/drug effects
8.
Neoplasia ; 18(1): 10-24, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26806348

ABSTRACT

The Hippo signaling network is a key regulator of cell fate. In the recent years, it was shown that its implication in cancer goes well beyond the sole role of YAP transcriptional activity and its regulation by the canonical MST/LATS kinase cascade. Here we show that the motin family member AMOTL1 is an important effector of Hippo signaling in breast cancer. AMOTL1 connects Hippo signaling to tumor cell aggressiveness. We show that both canonical and noncanonical Hippo signaling modulates AMOTL1 levels. The tumor suppressor Merlin triggers AMOTL1 proteasomal degradation mediated by the NEDD family of ubiquitin ligases through direct interaction. In parallel, YAP stimulates AMOTL1 expression. The loss of Merlin expression and the induction of Yap activity that are frequently observed in breast cancers thus result in elevated AMOTL1 levels. AMOTL1 expression is sufficient to trigger tumor cell migration and stimulates proliferation by activating c-Src. In a large cohort of human breast tumors, we show that AMOTL1 protein levels are upregulated during cancer progression and that, importantly, the expression of AMOTL1 in lymph node metastasis appears predictive of the risk of relapse. Hence we uncover an important mechanism by which Hippo signaling promotes breast cancer progression by modulating the expression of AMOTL1.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Membrane Proteins/metabolism , Neurofibromin 2/metabolism , Angiomotins , Animals , Breast Neoplasms/genetics , Cell Cycle Proteins , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Disease Models, Animal , Disease Progression , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression , Gene Expression Regulation, Neoplastic , Heterografts , Humans , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Mice , Neurofibromin 2/genetics , Nuclear Proteins/metabolism , Protein Binding , Proteolysis , Signal Transduction , Transcription Factors/metabolism , src-Family Kinases/metabolism
9.
PLoS One ; 7(5): e37490, 2012.
Article in English | MEDLINE | ID: mdl-22629406

ABSTRACT

The membrane cytoskeleton linker ezrin participates in several functions downstream of the receptor Met in response to Hepatocyte Growth Factor (HGF) stimulation. Here we report a novel interaction of ezrin with a HECT E3 ubiquitin ligase, WWP1/Aip5/Tiul1, a potential oncogene that undergoes genomic amplification and overexpression in human breast and prostate cancers. We show that ezrin binds to the WW domains of WWP1 via the consensus motif PPVY(477) present in ezrin's C-terminus. This association results in the ubiquitylation of ezrin, a process that requires an intact PPVY(477) motif. Interestingly ezrin ubiquitylation does not target the protein for degradation by the proteasome. We find that ezrin ubiquitylation by WWP1 in epithelial cells leads to the upregulation of Met level in absence of HGF stimulation and increases the response of Met to HGF stimulation as measured by the ability of the cells to heal a wound. Interestingly this effect requires ubiquitylated ezrin since it can be rescued, after depletion of endogenous ezrin, by wild type ezrin but not by a mutant of ezrin that cannot be ubiquitylated. Taken together our data reveal a new role for ezrin in Met receptor stability and activity through its association with the E3 ubiquitin ligase WWP1. Given the role of Met in cell proliferation and tumorigenesis, our results may provide a mechanistic basis for understanding the role of ezrin in tumor progression.


Subject(s)
Cytoskeletal Proteins/metabolism , Proto-Oncogene Proteins c-met/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/physiology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Membrane/metabolism , Cytoskeletal Proteins/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Proto-Oncogene Proteins c-met/genetics , Tumor Cells, Cultured , Ubiquitin-Protein Ligases/genetics
10.
Mol Biol Cell ; 23(6): 1080-94, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22262457

ABSTRACT

The mechanisms that regulate actin filament polymerization resulting in the morphogenesis of the brush border microvilli in epithelial cells remain unknown. Eps8, the prototype of a family of proteins capable of capping and bundling actin filaments, has been shown to bundle the microvillar actin filaments. We report that Eps8L1a, a member of the Eps8 family and a novel ezrin-interacting partner, controls microvillus length through its capping activity. Depletion of Eps8L1a leads to the formation of long microvilli, whereas its overexpression has the opposite effect. We demonstrate that ezrin differentially modulates the actin-capping and -bundling activities of Eps8 and Eps8L1a during microvillus assembly. Coexpression of ezrin with Eps8 promotes the formation of membrane ruffles and tufts of microvilli, whereas expression of ezrin and Eps8L1a induces the clustering of actin-containing structures at the cell surface. These distinct morphological changes are neither observed when a mutant of ezrin defective in its binding to Eps8/Eps8L1a is coexpressed with Eps8 or Eps8L1a nor observed when ezrin is expressed with mutants of Eps8 or Eps8L1a defective in the actin-bundling or -capping activities, respectively. Our data show a synergistic effect of ezrin and Eps8 proteins in the assembly and organization of actin microvillar filaments.


Subject(s)
Cytoskeletal Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Kidney Tubules, Proximal/cytology , Microvilli/metabolism , Actins/metabolism , Animals , Epithelial Cells/metabolism , LLC-PK1 Cells , Protein Interaction Domains and Motifs , Sus scrofa , Swine
11.
Mol Biol Cell ; 22(3): 375-85, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21148287

ABSTRACT

In the degradative pathway, the progression of cargos through endosomal compartments involves a series of fusion and maturation events. The HOPS (homotypic fusion and protein sorting) complex is part of the machinery that promotes the progression from early to late endosomes and lysosomes by regulating the exchange of small GTPases. We report that an interaction between subunits of the HOPS complex and the ERM (ezrin, radixin, moesin) proteins is required for the delivery of EGF receptor (EGFR) to lysosomes. Inhibiting either ERM proteins or the HOPS complex leads to the accumulation of the EGFR into early endosomes, delaying its degradation. This impairment in EGFR trafficking observed in cells depleted of ERM proteins is due to a delay in the recruitment of Rab7 on endosomes. As a consequence, the maturation of endosomes is perturbed as reflected by an accumulation of hybrid compartments positive for both early and late endosomal markers. Thus, ERM proteins represent novel regulators of the HOPS complex in the early to late endosomal maturation.


Subject(s)
Cytoskeletal Proteins/physiology , Endosomes/metabolism , ErbB Receptors/metabolism , Membrane Proteins/physiology , Microfilament Proteins/physiology , Cytoskeletal Proteins/analysis , Cytoskeletal Proteins/genetics , ErbB Receptors/analysis , HeLa Cells , Humans , Lysosomes/metabolism , Membrane Proteins/analysis , Membrane Proteins/genetics , Microfilament Proteins/analysis , Microfilament Proteins/genetics , Protein Transport , Vesicular Transport Proteins/analysis , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , rab GTP-Binding Proteins/analysis , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
12.
Mol Biol Cell ; 18(12): 4780-93, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17881735

ABSTRACT

The mechanisms underlying functional interactions between ERM (ezrin, radixin, moesin) proteins and Rho GTPases are not well understood. Here we characterized the interaction between ezrin and a novel Rho guanine nucleotide exchange factor, PLEKHG6. We show that ezrin recruits PLEKHG6 to the apical pole of epithelial cells where PLEKHG6 induces the formation of microvilli and membrane ruffles. These morphological changes are inhibited by dominant negative forms of RhoG. Indeed, we found that PLEKHG6 activates RhoG and to a much lesser extent Rac1. In addition we show that ezrin forms a complex with PLEKHG6 and RhoG. Furthermore, we detected a ternary complex between ezrin, PLEKHG6, and the RhoG effector ELMO. We demonstrate that PLEKHG6 and ezrin are both required in macropinocytosis. After down-regulation of either PLEKHG6 or ezrin expression, we observed an inhibition of dextran uptake in EGF-stimulated A431 cells. Altogether, our data indicate that ezrin allows the local activation of RhoG at the apical pole of epithelial cells by recruiting upstream and downstream regulators of RhoG and that both PLEKHG6 and ezrin are required for efficient macropinocytosis.


Subject(s)
Cytoskeletal Proteins/metabolism , Cytoskeleton/metabolism , Epithelial Cells/metabolism , Guanine Nucleotide Exchange Factors/metabolism , rho GTP-Binding Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Sequence , Animals , Cell Line , Conserved Sequence , Cytoskeletal Proteins/genetics , Guanine Nucleotide Exchange Factors/chemistry , Guanine Nucleotide Exchange Factors/genetics , Humans , Mice , Molecular Sequence Data , Protein Binding , Sequence Alignment , rho GTP-Binding Proteins/genetics
13.
J Cell Biol ; 164(5): 653-9, 2004 Mar 01.
Article in English | MEDLINE | ID: mdl-14993232

ABSTRACT

Ezrin, a membrane-actin cytoskeleton linker, which participates in epithelial cell morphogenesis, is held inactive in the cytoplasm through an intramolecular interaction. Phosphatidylinositol 4,5-bisphosphate (PIP2) binding and the phosphorylation of threonine 567 (T567) are involved in the activation process that unmasks both membrane and actin binding sites. Here, we demonstrate that ezrin binding to PIP2, through its NH2-terminal domain, is required for T567 phosphorylation and thus for the conformational activation of ezrin in vivo. Furthermore, we found that the T567D mutation mimicking T567 phosphorylation bypasses the need for PIP2 binding for unmasking both membrane and actin binding sites. However, PIP2 binding and T567 phosphorylation are both necessary for the correct apical localization of ezrin and for its role in epithelial cell morphogenesis. These results establish that PIP2 binding and T567 phosphorylation act sequentially to allow ezrin to exert its cellular functions.


Subject(s)
Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphatidylinositols/metabolism , Phosphoproteins/metabolism , Animals , Binding Sites , Cell Line , Cell Membrane/metabolism , Cell Polarity , Cell Size , Cytoskeletal Proteins , Epithelial Cells/cytology , Epithelial Cells/metabolism , Morphogenesis/physiology , Phosphorylation , Point Mutation , Protein Binding , Threonine/metabolism
14.
Mol Biol Cell ; 14(5): 2181-91, 2003 May.
Article in English | MEDLINE | ID: mdl-12802084

ABSTRACT

Ezrin, a membrane cytoskeleton linker, is involved in cellular functions, including epithelial cell morphogenesis and adhesion. A mutant form of ezrin, ezrin T567D, maintains the protein in an open conformation, which when expressed in Madin-Darby canine kidney cells causes extensive formation of lamellipodia and altered cell-cell contacts at low cell density. Furthermore, these cells do not form tubules when grown in a collagen type I matrix. While measuring the activity of Rho family GTPases, we found that Rac1, but not RhoA or Cdc 42, is activated in ezrin T567D-expressing cells, compared with cells expressing wild-type ezrin. Together with Rac1 activation, we observed an accumulation of E-cadherin in intracellular compartments and a concomitant decrease in the level of E-cadherin present at the plasma membrane. This effect could be reversed with a dominant negative form of Rac1, N17Rac1. We show that after a calcium switch, the delivery of E-cadherin from an internalized pool to the plasma membrane is greatly delayed in ezrin T567D-producing cells. In confluent cells, ezrin T567D production decreases the rate of E-cadherin internalization. Our results identify a new role for ezrin in cell adhesion through the activation of the GTPase Rac1 and the trafficking of E-cadherin to the plasma membrane.


Subject(s)
Adherens Junctions/metabolism , Cadherins/metabolism , Phosphoproteins/metabolism , rac1 GTP-Binding Protein/metabolism , Amino Acid Substitution , Animals , Cell Membrane/metabolism , Cytoskeletal Proteins , Dogs , Phosphoproteins/genetics , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...