Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 600(7887): 64-69, 2021 12.
Article in English | MEDLINE | ID: mdl-34853459

ABSTRACT

In quantum fluids, the quantization of circulation forbids the diffusion of a vortex swirling flow seen in classical viscous fluids. Yet, accelerating quantum vortices may lose their energy into acoustic radiations1,2, similar to the way electric charges decelerate on emitting photons. The dissipation of vortex energy underlies central problems in quantum hydrodynamics3, such as the decay of quantum turbulence, highly relevant to systems as varied as neutron stars, superfluid helium and atomic condensates4,5. A deep understanding of the elementary mechanisms behind irreversible vortex dynamics has been a goal for decades3,6, but it is complicated by the shortage of conclusive experimental signatures7. Here we address this challenge by realizing a programmable vortex collider in a planar, homogeneous atomic Fermi superfluid with tunable inter-particle interactions. We create on-demand vortex configurations and monitor their evolution, taking advantage of the accessible time and length scales of ultracold Fermi gases8,9. Engineering collisions within and between vortex-antivortex pairs allows us to decouple relaxation of the vortex energy due to sound emission and that due to interactions with normal fluid (that is, mutual friction). We directly visualize how the annihilation of vortex dipoles radiates a sound pulse. Further, our few-vortex experiments extending across different superfluid regimes reveal non-universal dissipative dynamics, suggesting that fermionic quasiparticles localized inside the vortex core contribute significantly to dissipation, thereby opening the route to exploring new pathways for quantum turbulence decay, vortex by vortex.

2.
Phys Rev Lett ; 126(5): 055301, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33605753

ABSTRACT

We investigate the transport of a Fermi gas with unitarity-limited interactions across the superfluid phase transition, probing its response to a direct current (dc) drive through a tunnel junction. As the superfluid critical temperature is crossed from below, we observe the evolution from a highly nonlinear to an Ohmic conduction characteristic, associated with the critical breakdown of the Josephson dc current induced by pair condensate depletion. Moreover, we reveal a large and dominant anomalous contribution to resistive currents, which reaches its maximum at the lowest attained temperature, fostered by the tunnel coupling between the condensate and phononic Bogoliubov-Anderson excitations. Increasing the temperature, while the zeroing of supercurrents marks the transition to the normal phase, the conductance drops considerably but remains much larger than that of a normal, uncorrelated Fermi gas tunneling through the same junction. We attribute such enhanced transport to incoherent tunneling of sound modes, which remain weakly damped in the collisional hydrodynamic fluid of unpaired fermions at unitarity.

3.
Science ; 369(6499): 84-88, 2020 07 03.
Article in English | MEDLINE | ID: mdl-32631890

ABSTRACT

The direct-current (dc) Josephson effect provides a phase-sensitive tool for investigating superfluid order parameters. We report on the observation of dc Josephson supercurrents in strongly interacting fermionic superfluids across a tunneling barrier in the absence of any applied potential difference. For sufficiently strong barriers, we observed a sinusoidal current-phase relation, in agreement with Josephson's seminal prediction. We mapped out the zero-resistance state and its breakdown as a function of junction parameters, extracting the Josephson critical current behavior. By comparing our results with an analytic model, we determined the pair condensate fraction throughout the Bardeen-Cooper-Schrieffer-Bose-Einstein condensation crossover. Our work suggests that coherent Josephson transport may be used to pin down superfluid order parameters in diverse atomic systems, even in the presence of strong correlations.

SELECTION OF CITATIONS
SEARCH DETAIL
...