Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pest Manag Sci ; 77(2): 697-708, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32841479

ABSTRACT

BACKGROUND: Black-foot and Petri diseases are the main fungal diseases associated with young grapevine decline. Two field experiments were established to evaluate the preventive effect of two potential biocontrol agents (BCAs), that is Streptomyces sp. E1 + R4 and Pythium oligandrum Po37, and three BCA-commercial products containing Trichoderma atroviride SC1, Trichoderma koningii TK7 and Pseudomonas fluorescens + Bacillus atrophaeus on fungal infection in grafted plants and plant growth parameters. RESULTS: The effectiveness of some BCA in reducing the incidence and severity of both diseases was dependent on the plant part analyzed and the plant age. No single BCA application was able to control both diseases. Streptomyces sp. E1 + R4 were able to reduce significantly the infection of the most prevalent black-foot disease fungi while P. oligandrum Po37 and Trichoderma spp. were able to reduce significantly Phaeomoniella chlamydospora and Phaeoacremonium minimum (Petri disease) infection. BCA treatments had no effect on the shoot weight, and root weight was significantly lower in all BCA treatments with respect to the control. CONCLUSIONS: The combination of the disease-suppressive activity of two or more beneficial microbes in a biocontrol preparation is required to prevent infection by black-foot and Petri disease fungi in vineyards.


Subject(s)
Vitis , Ascomycota , Bacillus , Hypocreales , Plant Diseases/prevention & control
2.
Plant Dis ; 104(8): 2269-2274, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32568630

ABSTRACT

Cadophora luteo-olivacea is the most prevalent Cadophora species associated with Petri disease and esca of grapevine. Accurate, early, and specific detection and quantification of C. luteo-olivacea are essential to alert growers and nurseries to the presence of the pathogens in soil and to prevent the spread of this pathogen through grapevine planting material. The aim of this study was to develop molecular tools to detect and quantify C. luteo-olivacea inoculum from environmental samples. Species specific primers based on the ß-tubulin gene and a TaqMan probe for droplet digital PCR (ddPCR) and quantitative PCR (qPCR) were first developed to detect and quantify purified DNA of the target fungus. Specificity tests showed that the primers were able to amplify the C. luteo-olivacea DNA (20 isolates) while none of the 29 nontarget fungal species (58 isolates) tested were amplified. The ddPCR was shown to be more sensitive compared with qPCR in the detection and quantification of C. luteo-olivacea at very low concentrations and was further selected to accurately detect and quantify the fungus from environmental samples. Twenty-five of the 94 grafting plants (26.6%) analyzed by ddPCR tested positive to C. luteo-olivacea DNA (>3 copies/µl). C. luteo-olivacea was barely detected from vineyard soils. The procedure employed in this study revealed the presence of the pathogen in symptomless vines, which makes implementation of this technique suitable for certification schemes of C. luteo-olivacea-free grapevine planting material.


Subject(s)
Ascomycota , Vitis , DNA Primers , Farms , Soil
3.
Plant Dis ; 104(4): 1144-1150, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32053059

ABSTRACT

Black-foot disease is one of the most important soilborne diseases affecting planting material in grapevine nurseries and young vineyards. Accurate, early, and specific detection and quantification of black-foot disease causing fungi are essential to alert growers and nurseries to the presence of the pathogens in soil, and to prevent the spread of these pathogens through grapevines using certified pathogen-free planting material and development of resistance. We comparatively assessed the accuracy, efficiency, and specificity of droplet digital PCR (ddPCR) and real-time PCR (qPCR) techniques for the detection and quantification of Ilyonectria liriodendri in bulk and rhizosphere soils, as well as grapevine endorhizosphere. Fungal abundance was not affected by soil-plant fractions. Both techniques showed a high degree of correlation across the samples assessed (R2 = 0.95) with ddPCR being more sensitive to lower target concentrations. Roots of asymptomatic vines were found to be a microbial niche that is inhabited by black-foot disease fungi.


Subject(s)
Hypocreales , Plant Diseases , Plant Roots , Rhizosphere , Soil
4.
Plant Dis ; 104(1): 94-104, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31738690

ABSTRACT

In this study, 3,426 grafted grapevines ready to be planted from 15 grapevine nursery fields in Northern Spain were inspected from 2016 to 2018 for black-foot causing pathogens. In all, 1,427 isolates of black-foot pathogens were collected from the asymptomatic inner tissues of surface sterilized secondary roots and characterized based on morphological features and DNA sequence data of the nuclear ribosomal DNA-internal transcribed spacer region, histone H3, translation elongation factor 1-alpha and ß-tubulin genes. Eleven species belonging to the genera Dactylonectria, Ilyonectria, Neonectria, and Thelonectria were identified, including Dactylonectria alcacerensis, D. macrodidyma, D. novozelandica, D. pauciseptata, D. torresensis, Ilyonectria liriodendri, I. pseudodestructans, I. robusta, Neonectria quercicola, Neonectria sp. 1, and Thelonectria olida. In addition, two species are newly described, namely D. riojana and I. vivaria. Twenty-four isolates representing 13 black-foot species were inoculated onto grapevine seedlings cultivar 'Tempranillo'. The pathogenicity tests detected diversity in virulence among fungal species and between isolates within each species. The most virulent species was D. novozelandica isolate BV-0760, followed by D. alcacerensis isolate BV-1240 and I. vivaria sp. nov. isolate BV-2305. This study improves our knowledge on the etiology and virulence of black-foot disease pathogens, and opens up new perspectives in the study of the endophytic phase of these pathogens in grapevines.


Subject(s)
Genetic Variation , Hypocreales , Plant Diseases , Vitis , Genes, Fungal/genetics , Hypocreales/classification , Hypocreales/cytology , Hypocreales/genetics , Plant Diseases/microbiology , Plant Diseases/statistics & numerical data , Spain , Species Specificity , Virulence , Vitis/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...