Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Pharmaceuticals (Basel) ; 14(4)2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33800582

ABSTRACT

[99mTc]Tc-HYNIC-TOC is the most widely used 99mTc-labeled somatostatin receptor (SST) agonist for the SPECT imaging of SST-expressing tumors, such as neuroendocrine tumors. Recently, radiolabeled SST antagonists have shown improved diagnostic efficacy over agonists. 99mTc-labeled SST antagonists are lacking in clinical practice. Surprisingly, when [99mTc]Tc-HYNIC was conjugated to the SST2 antagonist SS01, SST2 imaging was not feasible. This was not the case when [99mTc]Tc-N4 was conjugated to SS01. Here, we assessed the introduction of different spacers (X: ß-Ala, Ahx, Aun and PEG4) among HYNIC and SS01 with the aim of restoring the affinity of HYNIC conjugates. In addition, we used the alternative antagonist JR11 for determining the suitability of HYNIC with 99mTc-labeled SST2 antagonists. We performed a head-to-head comparison of the N4 conjugates of SS01 and JR11. [99mTc]Tc-HYNIC-TOC was used as a reference, and HEK-SST2 cells were used for in vitro and in vivo evaluation. EDDA was used as a co-ligand for all [99mTc]Tc-HYNIC conjugates. The introduction of Ahx restored, to a great extent, the SST2-mediated cellular uptake of the [99mTc]Tc-HYNIC-X conjugates (X: spacer), albeit lower than the corresponding [99mTc]Tc-N4-conjugates. SPECT/CT images showed that all 99mTc-labeled conjugates accumulated in the tumor and kidneys with [99mTc]Tc-HYNIC-PEG4-SS01, [99mTc]Tc-N4-SS01 and [99mTc]Tc-N4-JR11 having notably higher kidney uptake. Biodistribution studies showed similar or better tumor-to-non-tumor ratios for the [99mTc]Tc-HYNIC-Ahx conjugates, compared to the [99mTc]Tc-N4 counterparts. The [99mTc]Tc-HYNIC-Ahx conjugates of SS01 and JR11 were comparable to [99mTc]Tc-HYNIC-TOC as imaging agents. HYNIC is a suitable chelator for the development of 99mTc-labeled SST2 antagonists when a spacer of appropriate length, such as Ahx, is used.

2.
Molecules ; 25(18)2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32932783

ABSTRACT

Targeted radionuclide therapy of somatostatin receptor (SST)-expressing tumors is only partially addressed by the established somatostatin analogs having an affinity for the SST subtype 2 (SST2). Aiming to target a broader spectrum of tumors, we evaluated the bis-iodo-substituted somatostatin analog ST8950 ((4-amino-3-iodo)-d-Phe-c[Cys-(3-iodo)-Tyr-d-Trp-Lys-Val-Cys]-Thr-NH2), having subnanomolar affinity for SST2 and SST5, labeled with [177Lu]Lu3+ via the chelator DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid). Human Embryonic Kidney (HEK) cells stably transfected with the human SST2 (HEK-SST2) and SST5 (HEK-SST5) were used for in vitro and in vivo evaluation on a dual SST2- and SST5-expressing xenografted mouse model. natLu-DOTA-ST8950 showed nanomolar affinity for both subtypes (IC50 (95% confidence interval): 0.37 (0.22-0.65) nM for SST2 and 3.4 (2.3-5.2) for SST5). The biodistribution of [177Lu]Lu-DOTA-ST8950 was influenced by the injected mass, with 100 pmol demonstrating lower background activity than 10 pmol. [177Lu]Lu-DOTA-ST8950 reached its maximal uptake on SST2- and SST5-tumors at 1 h p.i. (14.17 ± 1.78 and 1.78 ± 0.35%IA/g, respectively), remaining unchanged 4 h p.i., with a mean residence time of 8.6 and 0.79 h, respectively. Overall, [177Lu]Lu-DOTA-ST8950 targets SST2-, SST5-expressing tumors in vivo to a lower extent, and has an effective dose similar to clinically used radiolabeled somatostatin analogs. Its main drawbacks are the low uptake in SST5-tumors and the persistent kidney uptake.


Subject(s)
Gastrointestinal Neoplasms/drug therapy , Lutetium/chemistry , Radioisotopes/chemistry , Receptors, Somatostatin/genetics , Somatostatin/analogs & derivatives , Animals , HEK293 Cells , Humans , Inhibitory Concentration 50 , Kidney/metabolism , Mice , Neoplasm Transplantation , Octreotide/analogs & derivatives , Peptides/chemistry , Protein Binding , Radiometry , Single Photon Emission Computed Tomography Computed Tomography
3.
EJNMMI Res ; 10(1): 90, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32757150

ABSTRACT

BACKGROUND: Somatostatin receptor (SST) targeting, specifically of the subtype 2 (SST2), with radiolabeled somatostatin analogs, is established for imaging and treatment of neuroendocrine tumors. Owing to the concomitant and heterogeneous expression of several subtypes on the same tumor, analogs targeting more subtypes than SST2 potentially target a broader spectrum of tumors and/or increase the uptake of a given tumor. The analog ST8950 ((4-amino-3-iodo)-D-Phe-c[Cys-(3-iodo)-Tyr-D-Trp-Lys-Val-Cys]-Thr-NH2), bearing 2 iodo-amino acids, exhibits sub-nanomolar affinity to SST2 and SST5. We report herein the development and preclinical evaluation of DOTA-ST8950 labeled with 68Ga, for imaging SST2- and SST5-expressing tumors. Comparative in vitro and in vivo studies were performed with the de-iodinated DOTA-ST8951 ((4-amino)-D-Phe-c[Cys-Tyr-D-Trp-Lys-Val-Cys]-Thr-NH2) and with the reference compounds DOTA-TATE (SST2 selective) and DOTA-NOC (for SST2 and SST5). RESULTS: Compared with natGa-DOTA-NOC, natGa-DOTA-ST8950 exhibited higher affinity to SST2 and SST5 (IC50 (95%CI), nM = 0.32 (0.20-0.50) and 1.9 (1.1-3.1) vs 0.70 (0.50-0.96) and 3.4 (1.8-6.2), respectively), while natGa-DOTA-ST8951 lost affinity for both subtypes. natGa-DOTA-ST8950 had the same potency for inducing SST2-mediated cAMP accumulation as natGa-DOTA-TATE and slightly better than natGa-DOTA-NOC (EC50, nM = 0.46 (0.23-0.92) vs 0.47 (0.15-1.5) vs 0.59 (0.18-1.9), respectively). [67Ga]Ga-DOTA-ST8950 had a similar internalization rate as [67Ga]Ga-DOTA-NOC in SST2-expressing cells (12.4 ± 1.6% vs 16.6 ± 2.2%, at 4 h, p = 0.0586). In vivo, [68Ga]Ga-DOTA-ST8950 showed high and specific accumulation in SST2- and SST5-expressing tumors, comparable with [68Ga]Ga-DOTA-NOC (26 ± 8 vs 30 ± 8 %IA/g, p = 0.4630 for SST2 and 15 ± 6 vs 12 ± 5 %IA/g, p = 0.3282, for SST5, 1 h p.i.) and accumulation in the SST-positive tissues, the kidneys and the liver. PET/CT images of [68Ga]Ga-DOTA-ST8950, performed in a dual HEK-SST2 and HEK-SST5 tumor xenografted model, clearly visualized both tumors and illustrated high tumor-to-background contrast. CONCLUSIONS: [68Ga]Ga-DOTA-ST8950 reveals its potential for PET imaging SST2- and SST5-expressing tumors. It compares favorably with the clinically used [68Ga]Ga-DOTA-NOC in terms of tumor uptake; however, its uptake in the liver remains a challenge for clinical translation. In addition, this study reveals the essential role of the iodo-substitutions in positions 1 and 3 of [68Ga]Ga-DOTA-ST8950 for maintaining affinity to SST2 and SST5, as the de-iodinated [68Ga]Ga-DOTA-ST8951 lost affinity for both receptor subtypes.

4.
PLoS One ; 13(4): e0195802, 2018.
Article in English | MEDLINE | ID: mdl-29668724

ABSTRACT

Copper-64 is an attractive radionuclide for PET imaging and is frequently used in clinical applications. The aim of this study was to perform a side-by-side comparison of the in vitro and in vivo performance of 64Cu-NODAGA-JR11 (NODAGA = 1,4,7-triazacyclononane,1-glutaric acid,4,7-acetic acid, JR11 = p-Cl-Phe-cyclo(D-Cys-Aph(Hor)-D-Aph(cbm)-Lys-Thr-Cys)D-Tyr-NH2), a somatostatin receptor 2 antagonist, with the clinically used sst2 agonist 64Cu-DOTA-TATE ((TATE = D-Phe-cyclo(Cys-Tyr-D-Trp-Lys-Thr-Cys)Thr). In vitro studies demonstrated Kd values of 5.7±0.95 nM (Bmax = 4.1±0.18 nM) for the antagonist 64/natCu-NODAGA-JR11 and 20.1±4.4. nM (Bmax = 0.48±0.18 nM) for the agonist 64/natCu-DOTA-TATE. Cell uptake studies showed the expected differences between agonists and antagonists. Whereas 64Cu-DOTA-TATE (the agonist) showed very effective internalization in the cell culture assay (with 50% internalized at 4 hours post-peptide addition under the given experimental conditions), 64Cu-NODAGA-JR11 (the antagonist) showed little internalization but strong receptor-mediated uptake at the cell membrane. Biodistribution studies of 64Cu-NODAGA-JR11 showed rapid blood clearance and tumor uptake with increasing tumor-to-relevant organ ratios within the first 4 hours and in some cases, 24 hours, respectively. The tumor washout was slow or non-existent in the first 4 hours, whereas the kidney washout was very efficient, leading to high and increasing tumor-to-kidney ratios over time. Specificity of tumor uptake was proven by co-injection of high excess of non-radiolabeled peptide, which led to >80% tumor blocking. 64Cu-DOTA-TATE showed less favorable pharmacokinetics, with the exception of lower kidney uptake. Blood clearance was distinctly slower and persistent higher blood values were found at 24 hours. Uptake in the liver and lung was relatively high and also persistent. The tumor uptake was specific and similar to that of 64Cu-NODAGA-JR11 at 1 h, but release from the tumor was very fast, particularly between 4 and 24 hours. Tumor-to-normal organ ratios were distinctly lower after 1 hour. This is indicative of insufficient in vivo stability. PET studies of 64Cu-NODAGA-JR11 reflected the biodistribution data with nicely delineated tumor and low background. 64Cu-NODAGA-JR11 shows promising pharmacokinetic properties for further translation into the clinic.


Subject(s)
Acetates , Copper Radioisotopes , Heterocyclic Compounds, 1-Ring , Neoplasms/diagnostic imaging , Neoplasms/metabolism , Positron-Emission Tomography , Radiopharmaceuticals , Receptors, Somatostatin/antagonists & inhibitors , Acetates/chemistry , Acetates/pharmacokinetics , Animals , Copper Radioisotopes/chemistry , Disease Models, Animal , HEK293 Cells , Heterocyclic Compounds, 1-Ring/chemistry , Heterocyclic Compounds, 1-Ring/pharmacokinetics , Heterografts , Humans , Mice , Molecular Imaging , Molecular Structure , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Tissue Distribution
5.
Mol Imaging ; 16: 1536012117737010, 2017.
Article in English | MEDLINE | ID: mdl-29098927

ABSTRACT

Radiotracers incorporating the urea-based Glu-NH-C(O)-NH-Lys group have gained prominence due to their role in targeting prostate-specific membrane antigen (PSMA)-a clinical biomarker of prostate cancer. Here, the synthesis, radiolabeling, and in vitro and in vivo characterization of two 68Ga-radiolabeled Glu-NH-C(O)-NH-Lys radiotracers conjugated to the desferrioxamine B (DFO) chelate were evaluated. Two linker groups based on amide bond and thiourea coupling chemistries were employed to develop 68Ga-DFO-Nsucc-PSMA (68Ga-4) and 68Ga-DFO- pNCS-Bn-PSMA (68Ga-7), respectively. Radiosynthesis proceeded quantitatively at room temperature with high radiochemical yields, chemical/radiochemical purities, and specific activities. Pharmacokinetic profiles of 68Ga-4 and 68Ga-7 were assessed using positron-emission tomography (PET) in mice bearing subcutaneous LNCaP tumors. Data were compared to the current clinical benchmark radiotracer 68Ga-HBED-CC-PSMA (68Ga-1) (HBED = N,N'-Bis(2-hydroxy-5-(ethylene-beta-carboxy)benzyl)ethylenediamine N,N'-diacetic acid). Results indicated that the target binding affinity, protein association, blood pool and background organ clearance properties, and uptake in PSMA-positive lesions are strongly dependent on the nature of the chelate, the linker, and the spacer groups. Protein dissociation constants ( Kd values) were found to be predictive of pharmacokinetics in vivo. Compared to 68Ga-1, 68Ga-4 and 68Ga-7 resulted in decreased tumor uptake but enhanced blood pool clearance and reduced residence time in the kidney. The study highlights the importance of maximizing protein binding affinity during radiotracer optimization.


Subject(s)
Deferoxamine/chemistry , Gallium Radioisotopes/chemistry , Positron-Emission Tomography , Prostate-Specific Antigen/metabolism , Radiopharmaceuticals/chemistry , Animals , Blood Proteins/metabolism , Cell Line, Tumor , Deferoxamine/chemical synthesis , Deferoxamine/pharmacokinetics , Edetic Acid/analogs & derivatives , Edetic Acid/chemistry , Gallium Radioisotopes/pharmacokinetics , Humans , Mice, Inbred BALB C , Mice, Nude , Protein Binding , Radiochemistry , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacokinetics
6.
Nucl Med Biol ; 45: 22-29, 2017 02.
Article in English | MEDLINE | ID: mdl-27865999

ABSTRACT

The bombesin receptor family, in particular the gastrin-releasing peptide receptor (GRPr), is an attractive target in the field of nuclear oncology due to the high density of these receptors on the cell surface of several human tumors. The successful clinical implementation of 64Cu-CB-TE2A-AR06, 68Ga-RM2 and 68Ga-NODAGA-MJ9, prompted us to continue the development of GRPr-antagonists. The aim of the present study was to assess if N-terminal modulations of the statine-based GRPr-antagonist influence the binding affinity, the pharmacokinetic performance and the in vivo metabolic stability. METHODS: The GRPr-antagonist (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2) was functionalized with the chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) via the spacer 4-amino-1-carboxymethyl-piperidine (Pip) and the amino acid N-Methyl-ß-Ala, to obtain NMe-RM2 and labeled with 68Ga and 177Lu. The GRPr affinity of the corresponding metalloconjugates determined using [125I-Tyr4]-BN as radioligand. In vitro evaluation included internalization studies using PC3 cells. The 68Ga-conjugate was evaluated in PC3 xenografts by biodistribution and PET studies, while investigations on the metabolic stability and plasma protein binding were performed. RESULTS: The half maximum inhibitory concentrations (IC50) of the metalloconjugates, using [125I-Tyr4]-BN, are in the low nanomolar range. PC3-cell culture binding studies of both metallated NMe-RM2 and RM2 show high GRPr-bound activity and low internalization. Metabolic studies showed that 68Ga-NMe-RM2 and 68Ga-RM2 are being cleaved in a similar fashion into three metabolites, with a good proportion of about 50% of the remaining blood activity at 15min post injection (p.i.) being represented by the intact radiotracer. 68Ga-NMe-RM2 was shown to target specifically PC3 xenografts, with high and sustained tumor uptake of about 13% IA/g within a time frame of 3h. The PET images clearly visualized the tumor. CONCLUSIONS: The relatively high percentage of the remaining intact radiotracer in blood 15min post injection sufficiently enables in vivo targeting of GRPr positive tumors, finding which has been also shown in clinical trials.


Subject(s)
Amino Acids/chemistry , Amino Acids/metabolism , Receptors, Bombesin/antagonists & inhibitors , Amino Acid Sequence , Amino Acids/pharmacokinetics , Amino Acids/pharmacology , Animals , Cell Line, Tumor , Drug Stability , Female , Humans , Hydrophobic and Hydrophilic Interactions , Mice , Positron-Emission Tomography , Protein Transport , Radiochemistry , Tissue Distribution
7.
J Nucl Med ; 57(8): 1282-8, 2016 08.
Article in English | MEDLINE | ID: mdl-27127218

ABSTRACT

UNLABELLED: The glucagon-like peptide-1 (GLP-1) receptors are important biomarkers for imaging pancreatic ß-cell mass and detection of benign insulinomas. Using GLP-1 receptor antagonists, we aimed to eliminate the insulin-related side effects reported for all GLP-1 receptor agonists. Additionally, using a nonresidualizing tracer, (125)I-Bolton-Hunter-Exendin(9-39)NH2 ((125)I-BH-Ex(9-39)NH2), we aimed to reduce the high kidney uptake, enabling a better detection of insulinomas in the tail and head of the pancreas. METHODS: The affinity and biodistribution of Ex(9-39)NH2-based antagonists, modified with DOTA or NODAGA chelators at positions Lys(27) and Lys(40) and labeled with (68)Ga and (125)I-BH-Ex(9-39)NH2, were compared with the reference GLP-1 receptor agonist [Nle(14),Lys(40)(Ahx-DOTA-(68)Ga)NH2]Ex-4. The inhibitory concentration of 50% (IC50) values were determined using autoradiography on human tissues with (125)I-GLP-1(7-36)NH2 as a radioligand. Pharmacokinetics and PET imaging were studied in nude mice bearing rat Ins-1E tumors. RESULTS: Conjugation of DOTA and NODAGA chelators at positions Lys(27) and Lys(40) of Ex(9-39)NH2 resulted in a distinct loss of affinity toward GLP-1 receptor in vitro. Among the studied antagonists, [Lys(40)(NODAGA-(nat)Ga)NH2]Ex(9-39) showed the lowest IC50 value (46.7 ± 16.3 nM). The reference agonist [Nle(14),Lys(40)(Ahx-DOTA)NH2]Ex-4 demonstrated the highest affinity (IC50 = 0.9 ± 0.3 nM). Biodistribution of [Nle(14),Lys(40)(Ahx-DOTA-(68)Ga)NH2]Ex-4 at 1 h after injection demonstrated 40.2 ± 8.2 percentage injected activity per gram (%IA/g) uptake in Ins-1E tumor, 12.5 ± 2.2 %IA/g in the pancreas, and 235.8 ± 17.0 %IA/g in the kidney, with tumor-to-blood and tumor-to-kidney ratios of 100.52 and 0.17, respectively. Biodistribution of [Lys(40)(NODAGA-(68)Ga)NH2]Ex(9-39) showed only 2.2 ± 0.2 %IA/g uptake in Ins-1E tumor, 1.0 ± 0.1 %IA/g in the pancreas, and 78.4 ± 8.5 %IA/g in the kidney at 1 h after injection, with tumor-to-blood and tumor-to-kidney ratios of 7.33 and 0.03, respectively. In contrast, (125)I-BH-Ex(9-39)NH2 showed tumor uptake (42.5 ± 8.1 %IA/g) comparable to the agonist and 28.8 ± 5.1 %IA/g in the pancreas at 1 h after injection. As we hypothesized, the kidney uptake of (125)I-BH-Ex(9-39)NH2 was low, only 12.1 ± 1.4 %IA/g at 1 h after injection. The tumor-to-kidney ratio of (125)I-BH-Ex(9-39)NH2 was improved 20-fold. CONCLUSION: Our results suggest that iodinated Ex(9-39)NH2 may be a promising tracer for imaging GLP-1 receptor expression in vivo. Because of the 20-fold improved tumor-to-kidney ratio (125)I-BH-Ex(9-39)NH2 may offer higher sensitivity in the detection of insulinomas and imaging of ß-cell mass in diabetic patients. Further studies with (124)I-BH-Ex(9-39)NH2 are warranted.


Subject(s)
Isotope Labeling/methods , Peptide Fragments/chemical synthesis , Peptide Fragments/pharmacokinetics , Animals , Drug Synergism , Female , Glucagon-Like Peptide Receptors , Metabolic Clearance Rate , Mice , Mice, Inbred BALB C , Mice, Nude , Organ Specificity , Radiopharmaceuticals , Tissue Distribution
8.
EJNMMI Res ; 6(1): 17, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26897133

ABSTRACT

BACKGROUND: Overexpression of the gastrin-releasing peptide receptor (GRP-R) has been documented in several human neoplasms such as breast, prostate, and ovarian cancer. There is growing interest in developing radiolabeled peptide-based ligands toward these receptors for the purpose of in vivo imaging and radionuclide therapy of GRP-R-overexpressing tumors. A number of different peptide sequences, isotopes, and labeling methods have been proposed for this purpose. The aim of this work is to perform a direct side-by-side comparison of different GRP-R binding peptides utilizing a single labeling strategy to identify the most suitable peptide sequence. METHODS: Solid-phase synthesis of eight derivatives (BN1-8) designed based on literature analysis was carried out. Peptides were coupled to the DOTA chelator through a PEG4 spacer at the N-terminus. Derivatives were characterized for serum stability, binding affinity on PC-3 human prostate cancer cells, biodistribution in tumor-bearing mice, and gamma camera imaging at 1, 6, and 24 h after injection. RESULTS: Serum stability was quite variable among the different compounds with half-lives ranging from 16 to 400 min at 37 °C. All compounds tested showed K d values in the nanomolar range with the exception of BN3 that showed no binding. Biodistribution and imaging studies carried out for compounds BN1, BN4, BN7, and BN8 showed targeting of the GRP-R-positive tumors and the pancreas. The BN8 compound (DOTA-PEG-DPhe-Gln-Trp-Ala-Val-NMeGly-His-Sta-Leu-NH2) showed high affinity, the longest serum stability, and the highest target-to-background ratios in biodistribution and imaging experiments among the compounds tested. CONCLUSIONS: Our results indicate that the NMeGly for Gly substitution and the Sta-Leu substitution at the C-terminus confer high serum stability while maintaining high receptor affinity, resulting in biodistribution properties that outperform those of the other peptides.

9.
J Nucl Med ; 57(1): 96-102, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26514172

ABSTRACT

UNLABELLED: The CD30-specific antibody-drug conjugate, brentuximab vedotin, is approved for the treatment of relapsed, refractory Hodgkin lymphomas and systemic anaplastic large T-cell lymphomas. Multiple ongoing clinical trials are investigating brentuximab vedotin efficacy in other CD30-positive hematologic malignancies. Because CD30 expression varies among different types of lymphoma and can also change during the course of treatment, companion diagnostic imaging of CD30 could be a valuable tool in optimizing patient-specific brentuximab vedotin treatment regimens. METHODS: The mouse antihuman CD30 antibody AC-10 was radiolabeled with the positron-emitting radionuclide (89)Zr. The stability and specificity of (89)Zr-desferrioxamine (DFO)-labeled CD30-specific AC-10 antibody ((89)Zr-DFO-AC-10) was evaluated in vitro. The pharmacokinetics of (89)Zr-DFO-AC-10 was studied in BALB/c nude mice bearing subcutaneous human Karpas 299 tumors (CD30-positive model) or A-431 tumors (CD30-negative model) using PET/CT imaging, biodistribution studies, and autoradiography. RESULTS: AC-10 was conjugated with a DFO B chelator and radiolabeled with (89)Zr to give formulated (89)Zr-DFO-AC-10 with a radiochemical yield of 80%, radiochemical purity greater than 99%, and specific activity of 111-148 MBq/mg. (89)Zr-DFO-AC-10 was stable in mouse and human sera and preserved the immunoreactivity toward CD30. Biodistribution data showed the highest tissue accumulation of (89)Zr-DFO-AC-10 in CD30-positive tumors, with 37.9% ± 8.2% injected activity per gram of tissue at 72 h after injection, whereas uptake in CD30-negative tumors was 11.0% ± 0.4%. The specificity of (89)Zr-DFO-AC-10 binding to CD30 in vivo was confirmed by blocking studies. Time-activity curves showed that between 24 and 144 h after injection, tumor-to-muscle ratios increased from 18.9 to 51.8 in the CD30-positive model and from 4.8 to 8.7 in the CD30-negative model. Tumor-to-blood ratios also increased, from 3.2 to 13.6 and from 1 to 2 in the CD30-positive and -negative models, respectively. CONCLUSION: Our results demonstrate that for measuring CD30 expression, (89)Zr-DFO-AC-10 is a sensitive PET agent with high tumor-to-normal-tissue contrast. (89)Zr-DFO-AC-10 is a promising CD30-imaging radiotracer for clinical translation in patients with various lymphomas and other diseases.


Subject(s)
Antibodies, Monoclonal/immunology , Deferoxamine/chemistry , Ki-1 Antigen/immunology , Lymphoma/diagnostic imaging , Positron-Emission Tomography/methods , Radioisotopes , Zirconium , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/pharmacokinetics , Antibody Specificity , Cell Line, Tumor , Drug Stability , Female , Humans , Immunoconjugates/chemistry , Immunoconjugates/immunology , Immunoconjugates/pharmacokinetics , Ki-1 Antigen/metabolism , Lymphoma/metabolism , Lymphoma/pathology , Mice , Radiochemistry , Tissue Distribution
10.
Mol Pharm ; 12(8): 2781-90, 2015 Aug 03.
Article in English | MEDLINE | ID: mdl-26132879

ABSTRACT

The gastrin-releasing peptide receptor (GRPr) is an important molecular target for the visualization and therapy of tumors and can be targeted with radiolabeled bombesin derivatives. The present study aims to develop statine-based bombesin receptor antagonists suitable for labeling with 64Cu for imaging by positron emission tomography (PET). The potent GRPr antagonist D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 was conjugated to the sarcophagine (3,6,10,13,16,19-hexaazabicyclo[6.6.6] icosane=Sar) derivative 5-(8-methyl-3,6,10,13,16,19-hexaaza-bicyclo[6.6.6]icosan-1-ylamino)-5-oxopentanoic acid (MeCOSar) via PEG4 (LE1) and PEG2 (LE2) spacers and radiolabeled with 64Cu2+ with >95% yield and specific activities of about 100 MBq/nmol. Both Cu(II) conjugates have high affinity for GRPr (IC50: natCu-LE1, 1.4±0.1 nM; natCu-LE2, 3.8±0.6 nM). The antagonistic properties of both conjugates were confirmed by Ca2+-flux measurements. Biodistribution studies of Cu-64-LE1 exhibited specific targeting of the tumor (19.6±4.7% IA/g at 1 h p.i.) and GRPr-positive organs. Biodistribution and PET images at 4 and 24 h postinjection showed increasing tumor-to-background ratios with time. This was illustrated by the acquisition of PET images showing high tumor-to-normal tissue contrast. This study demonstrates the high affinity of the MeCOSar-PEGx-bombesin conjugates to GRPr. The stability of 64Cu complexes of MeCOSar, the long half-life of 64Cu, and the suitable biodistribution profile of the 64Cu-labeled peptides lead to PET images of high contrast suitable for potential translation into the clinic.


Subject(s)
Copper Radioisotopes/pharmacokinetics , Dipeptides/chemistry , Heterocyclic Compounds/chemistry , Positron-Emission Tomography/methods , Prostatic Neoplasms/diagnostic imaging , Radiopharmaceuticals/pharmacokinetics , Receptors, Bombesin/antagonists & inhibitors , Animals , Female , Humans , Male , Mice , Mice, Nude , Peptide Fragments/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Tissue Distribution , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
11.
J Nucl Med ; 55(8): 1248-52, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24963127

ABSTRACT

UNLABELLED: Preclinical and clinical studies have indicated that somatostatin receptor (sst)-expressing tumors demonstrate higher uptake of radiolabeled sst antagonists than of sst agonists. In 4 consecutive patients with advanced neuroendocrine tumors, we evaluated whether treatment with (177)Lu-labeled sst antagonists is feasible. METHODS: After injection of approximately 1 GBq of (177)Lu-DOTA-[Cpa-c(DCys-Aph(Hor)-DAph(Cbm)-Lys-Thr-Cys)-DTyr-NH2] ((177)Lu-DOTA-JR11) and (177)Lu-DOTATATE, 3-dimensional voxel dosimetry analysis based on SPECT/CT was performed. A higher tumor-to-organ dose ratio for (177)Lu-DOTA-JR11 than for (177)Lu-DOTATATE was the prerequisite for treatment with (177)Lu-DOTA-JR11. RESULTS: Reversible minor adverse effects of (177)Lu-DOTA-JR11 were observed. (177)Lu-DOTA-JR11 showed a 1.7-10.6 times higher tumor dose than (177)Lu-DOTATATE. At the same time, the tumor-to-kidney and tumor-to-bone marrow dose ratio was 1.1-7.2 times higher. All 4 patients were treated with (177)Lu-DOTA-JR11, resulting in partial remission in 2 patients, stable disease in 1 patient, and mixed response in the other patient. CONCLUSION: Treatment of neuroendocrine tumors with radiolabeled sst antagonists is clinically feasible and may have a significant impact on peptide receptor radionuclide therapy.


Subject(s)
Neuroendocrine Tumors/radiotherapy , Octreotide/analogs & derivatives , Oligopeptides/pharmacology , Oligopeptides/therapeutic use , Organometallic Compounds/pharmacology , Organometallic Compounds/therapeutic use , Receptors, Somatostatin/agonists , Receptors, Somatostatin/antagonists & inhibitors , Adult , Aged , Amino Acid Sequence , Feasibility Studies , Female , Humans , Lutetium/therapeutic use , Male , Neuroendocrine Tumors/diagnostic imaging , Octreotide/adverse effects , Octreotide/pharmacokinetics , Octreotide/pharmacology , Octreotide/therapeutic use , Oligopeptides/adverse effects , Oligopeptides/pharmacokinetics , Organometallic Compounds/adverse effects , Organometallic Compounds/pharmacokinetics , Pilot Projects , Radioisotopes/therapeutic use , Radiometry , Tomography, Emission-Computed, Single-Photon , Tomography, X-Ray Computed , Treatment Outcome
12.
J Nucl Med ; 52(7): 1110-8, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21680701

ABSTRACT

UNLABELLED: Somatostatin-based radiolabeled peptides have been successfully introduced into the clinic for targeted imaging and radionuclide therapy of somatostatin receptor (sst)-positive tumors, especially of subtype 2 (sst2). The clinically used peptides are exclusively agonists. Recently, we showed that radiolabeled antagonists may be preferable to agonists because they showed better pharmacokinetics, including higher tumor uptake. Factors determining the performance of radioantagonists have only scarcely been studied. Here, we report on the development and evaluation of four (64)Cu or (68)Ga radioantagonists for PET of sst2-positive tumors. METHODS: The novel antagonist p-Cl-Phe-cyclo(D-Cys-Tyr-D-4-amino-Phe(carbamoyl)-Lys-Thr-Cys)D-Tyr-NH(2) (LM3) was coupled to 3 macrocyclic chelators, namely 4,11-bis(carboxymethyl)-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (CB-TE2A), 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA), and DOTA. (64/nat)Cu- and (68/nat)Ga-NODAGA-LM3 were prepared at room temperature, and (64/nat)Cu-CB-TE2A-LM3 and (68/nat)Ga-DOTA-LM3 were prepared at 95°C. Binding affinity and antagonistic properties were determined with receptor autoradiography and immunofluorescence microscopy using human embryonic kidney (HEK)-sst2 cells. In vitro internalization and dissociation was evaluated using the same cell line. Biodistribution and small-animal PET studies were performed with HEK-sst2 xenografts. RESULTS: All metallopeptides demonstrated antagonistic properties. The affinities depend on chelator and radiometal and vary about 10-fold; (68/nat)Ga-NODAGA-LM3 has the lowest half maximal inhibitory concentration (1.3 ± 0.3 nmol/L). The biodistribution studies show impressive tumor uptake at 1 h after injection, particularly of (64)Cu- and (68)Ga-NODAGA-LM3 (∼40 percentage injected dose per gram of tissue [%ID/g]), which were proven to be specific. Background clearance was fast and the tumor washout relatively slow for (64)Cu-NODAGA-LM3 (∼15 %ID/g, 24 h after injection) and almost negligible for (64)Cu-CB-TE2A-LM3 (26.9 ± 3.3 %ID/g and 21.6 ± 2.1 %ID/g, 4 and 24 h after injection, respectively). Tumor-to-normal-tissue ratios were significantly higher for (64)Cu-NODAGA-LM3 than for (64)Cu-CB-TE2A-LM3 (tumor-to-kidney, 12.8 ± 3.6 and 1.7 ± 0.3, respectively; tumor-to-muscle, 1,342 ± 115 and 75.2 ± 8.5, respectively, at 24 h, P < 0.001). Small-animal PET shows clear tumor localization and high image contrast, especially for (64)Cu- and (68)Ga-NODAGA-LM3. CONCLUSION: This article demonstrates the strong dependence of the affinity and pharmacokinetics of the somatostatin-based radioantagonists on the chelator and radiometal. (64)Cu- and (68)Ga-NODAGA-LM3 and (64)Cu-CB-TE2A-LM3 are promising candidates for clinical translation because of their favorable pharmacokinetics and the high image contrast on PET scans.


Subject(s)
Chelating Agents/chemistry , Copper Radioisotopes , Neoplasms/diagnostic imaging , Neoplasms/metabolism , Positron-Emission Tomography/methods , Receptors, Somatostatin/antagonists & inhibitors , Somatostatin , Amino Acid Sequence , Animals , Female , Gallium Radioisotopes , HEK293 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Mice , Protein Transport , Radiochemistry , Receptors, Somatostatin/metabolism , Somatostatin/chemistry , Somatostatin/metabolism , Somatostatin/pharmacology
14.
J Pept Sci ; 14(8): 903-10, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18320561

ABSTRACT

The chemical synthesis by solid-phase methods of a novel amphiphilic peptide, peptide-conjugate amphiphile (PCA), containing in the same molecule three different functions: (i) the N,N-bis[2-[bis(carboxy-ethyl)amino]ethyl]-L-glutamic acid (DTPAGlu) chelating agent, (ii) the CCK8 bioactive peptide, and (iii) a hydrophobic moiety containing four alkyl chains with 18 carbon atoms each, is reported. In water solution at pH 7.4, PCA self-assembles in very stable micelles at very low concentration [critical micellar concentration (cmc) values of 5 x 10(-7) mol kg(-1)] as confirmed by fluorescence spectroscopy. The structural characterization, obtained with small-angle neutron scattering (SANS) measurements, indicates that the aggregates are substantially represented by ellipsoidal micelles with an aggregation number of 39 +/- 2 and the two micellar axes of about 52 and 26 A.


Subject(s)
Cholecystokinin/chemistry , Micelles , Pentetic Acid/analogs & derivatives , Peptide Fragments/chemistry , Peptides/chemistry , Peptides/chemical synthesis , Sincalide/analogs & derivatives , Surface-Active Agents/chemistry , Surface-Active Agents/chemical synthesis , Hydrophobic and Hydrophilic Interactions , Molecular Structure , Neutron Diffraction , Pentetic Acid/chemistry , Scattering, Small Angle , Sincalide/chemistry , Solutions/chemistry , Spectrometry, Fluorescence , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...