Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(12): e0208718, 2018.
Article in English | MEDLINE | ID: mdl-30557407

ABSTRACT

Policy-makers require strategies to select a set of sustainability indicators that are useful for monitoring sustainability. For this reason, we have developed a model where sustainability indicators compete for the attention of society. This model has shown to have steady situations where a set of sustainability indicators are stable. To understand the role of the network configuration, in this paper we analyze the network properties of the Entangled Sustainability model. We have used the degree distribution, the clustering coefficient, and the interaction strength distribution as main measures. We also analyze the network properties for scenarios compared against randomly generated scenarios. We found that the stable situations show different characteristics from the unstable transitions present in the model. We also found that the complex emergent feature of sustainability shown in the model is an attribute of the scenarios, however, the randomly generated scenarios do not present the same network properties.


Subject(s)
Models, Theoretical , Sustainable Development , Algorithms , Computer Simulation , Humans , Sustainable Growth
2.
PLoS One ; 10(8): e0135250, 2015.
Article in English | MEDLINE | ID: mdl-26295948

ABSTRACT

Nowadays the challenge for humanity is to find pathways towards sustainable development. Decision makers require a set of sustainability indicators to know if the sustainability strategies are following those pathways. There are more than one hundred sustainability indicators but they differ on their relative importance according to the size of the locality and change on time. The resources needed to follow these sustainability indicators are scarce and in some instances finite, especially in smaller regions. Therefore strategies to select set of these indicators are useful for decision makers responsible for monitoring sustainability. In this paper we propose a model for the identification and selection of a set of sustainability indicators that adequately represents human systems. In developing this model, we applied evolutionary dynamics in a space where sustainability indicators are fundamental entities interconnected by an interaction matrix. we used a fixed interaction that simulates the current context for the city of Cuernavaca, México as an example. We were able to identify and define relevant sets indicators for the system by using the Pareto principle. In this case we identified a set of sixteen sustainability indicators with more than 80% of the total strength. This set presents resilience to perturbations. For the Tangled Nature framework we provided a manner of treating different contexts (i.e., cities, counties, states, regions, countries, continents or the whole planet), dealing with small dimensions. This model provides decision makers with a valuable tool to select sustainability indicators set for towns, cities, regions, countries, continents or the entire planet according to a coevolutionary framework. The social legitimacy can arise from the fact that each individual indicator must be selected from those that are most important for the subject community.


Subject(s)
Conservation of Natural Resources/statistics & numerical data , Models, Statistical , Cities/economics , Conservation of Natural Resources/economics , Humans , Mexico
3.
PLoS One ; 10(5): e0124830, 2015.
Article in English | MEDLINE | ID: mdl-26000444

ABSTRACT

Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies.


Subject(s)
Renewable Energy , Wind , Models, Theoretical , Power Plants
SELECTION OF CITATIONS
SEARCH DETAIL
...