Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4552, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811579

ABSTRACT

Perovskite solar cells promise to be part of the future portfolio of photovoltaic technologies, but their instability is slow down their commercialization. Major stability assessments have been recently achieved but reliable accelerated ageing tests on beyond small-area cells are still poor. Here, we report an industrial encapsulation process based on the lamination of highly viscoelastic semi-solid/highly viscous liquid adhesive atop the perovskite solar cells and modules. Our encapsulant reduces the thermomechanical stresses at the encapsulant/rear electrode interface. The addition of thermally conductive two-dimensional hexagonal boron nitride into the polymeric matrix improves the barrier and thermal management properties of the encapsulant. Without any edge sealant, encapsulated devices withstood multifaceted accelerated ageing tests, retaining >80% of their initial efficiency. Our encapsulation is applicable to the most established cell configurations (direct/inverted, mesoscopic/planar), even with temperature-sensitive materials, and extended to semi-transparent cells for building-integrated photovoltaics and Internet of Things systems.

2.
Nanoscale Adv ; 6(9): 2419-2430, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38694463

ABSTRACT

Molybdenum disulfide is an emerging 2D material with several potential applications in medicine. Therefore, it is crucial to ascertain its biocompatibility. Mast cells are immune cells that are found in many organs and tissues in contact with the extracellular environment, and can be cultured from progenitor cells present in the bone marrow. Given the long period required for differentiation and proliferation of primary mast cells, human mast cell lines have emerged as a tractable model for biological and toxicological studies. Here, we compare two types of industrial MoS2 using CD34+-derived primary human mast cells and the LAD2 cell line. Minimal effects were observed on early-stage activation endpoints such as ß-hexosaminidase release and expression of surface markers of mast cell activation. Transmission electron microscopy revealed limited uptake of the tested materials. Overall, MoS2 was found to be biocompatible, and the LAD2 cell line was validated as a useful in vitro model of mast cells.

3.
ACS Nano ; 17(24): 24919-24935, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38051272

ABSTRACT

Boron nitride (BN) nanomaterials have drawn a lot of interest in the material science community. However, extensive research is still needed to thoroughly analyze their safety profiles. Herein, we investigated the pulmonary impact and clearance of two-dimensional hexagonal boron nitride (h-BN) nanosheets and boron nitride nanotubes (BNNTs) in mice. Animals were exposed by single oropharyngeal aspiration to h-BN or BNNTs. On days 1, 7, and 28, bronchoalveolar lavage (BAL) fluids and lungs were collected. On one hand, adverse effects on lungs were evaluated using various approaches (e.g., immune response, histopathology, tissue remodeling, and genotoxicity). On the other hand, material deposition and clearance from the lungs were assessed. Two-dimensional h-BN did not cause any significant immune response or lung damage, although the presence of materials was confirmed by Raman spectroscopy. In addition, the low aspect ratio h-BN nanosheets were internalized rapidly by phagocytic cells present in alveoli, resulting in efficient clearance from the lungs. In contrast, high aspect ratio BNNTs caused a strong and long-lasting inflammatory response, characterized by sustained inflammation up to 28 days after exposure and the activation of both innate and adaptive immunity. Moreover, the presence of granulomatous structures and an indication of ongoing fibrosis as well as DNA damage in the lung parenchyma were evidenced with these materials. Concurrently, BNNTs were identified in lung sections for up to 28 days, suggesting long-term biopersistence, as previously demonstrated for other high aspect ratio nanomaterials with poor lung clearance such as multiwalled carbon nanotubes (MWCNTs). Overall, we reveal the safer toxicological profile of BN-based two-dimensional nanosheets in comparison to their nanotube counterparts. We also report strong similarities between BNNTs and MWCNTs in lung response, emphasizing their high aspect ratio as a major driver of their toxicity.


Subject(s)
Nanostructures , Nanotubes, Carbon , Mice , Animals , Nanotubes, Carbon/toxicity , Nanostructures/toxicity , Lung/pathology , Boron Compounds/toxicity , Boron Compounds/chemistry
4.
J Mater Chem A Mater ; 11(24): 12866-12875, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37346737

ABSTRACT

Improving the perovskite/electron-transporting layer (ETL) interface is a crucial task to boost the performance of perovskite solar cells (PSCs). This is utterly fundamental in an inverted (p-i-n) configuration using fullerene-based ETLs. Here, we propose a scalable strategy to improve fullerene-based ETLs by incorporating high-quality few-layer graphene flakes (GFs), industrially produced through wet-jet milling exfoliation of graphite, into phenyl-C61-butyric acid methyl ester (PCBM). Our new composite ETL (GF:PCBM) can be processed into an ultrathin (∼10 nm), pinhole-free film atop the perovskite. We find that the presence of GFs in the PCBM matrix reduces defect-mediated recombination, while creating preferential paths for the extraction of electrons towards the current collector. The use of our GF-based composite ETL resulted in a significant enhancement in the open circuit voltage and fill factor of triple cation-based inverted PSCs, boosting the power conversion efficiency from ∼19% up to 20.8% upon the incorporation of GFs into the ETL.

5.
Adv Mater ; 35(23): e2211037, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36994787

ABSTRACT

The integration of 2D materials in triboelectric nanogenerators (TENGs) is known to increase the mechanical-to-electrical power conversion efficiency. 2D materials are used in TENGs with multiple roles as triboelectric material, charge-trapping fillers, or as electrodes. Here, novel TENGs based on few-layers graphene (FLG) electrodes and stable gel electrolytes composed of liquid phase exfoliated 2D-transition metal dichalcogenides and polyvinyl alcohol are developed. TENGs embedding FLG and gel composites show competitive open-circuit voltage (≈ 300 V), instant peak power (530 mW m-2 ), and stability (> 11 months). These values correspond to a seven-fold higher electrical output compared to TENGs embedding bare FLG electrodes. It is demonstrated that such a significant improvement depends on the high electrical double-layer capacitance (EDLC) of FLG electrodes functionalized with the gel composites. The wet encapsulation of the TENGs is shown to be an effective strategy to increase their power output further highlighting the EDLC role. It is also shown that the EDLC is dependent upon the transition metal (W vs Mo) rather than the relative abundance of 1T or 2H phases. Overall, this work lays down the roots for novel sustainable electrochemical-(e)-TENGs developed exploiting strategies typically used in electrochemical capacitors.

6.
NanoImpact ; 29: 100451, 2023 01.
Article in English | MEDLINE | ID: mdl-36626980

ABSTRACT

MoS2 has been increasingly used in place of graphene as a flexible and multifunctional 2D material in many biomedical applications such as cancer detection and drug delivery, which makes it crucial to evaluate downstream compatibility in human immune cells. Molybdenum is a component of stainless-steel stent implants and has previously been implicated in stent hypersensitivity. In view of this, it is important to ascertain the effect of MoS2 on allergy-relevant cells. Basophils are a less commonly used immune cell type. Unlike mast cells, basophils can be easily derived from primary human blood and can act as a sentinel for allergy. However, merely testing any one type of MoS2 in basophils could result in different biological results. We thus decided to compare 2D MoS2 from the two companies BeDimensional© (BD) and Biograph Solutions (BS), manufactured with two different but commonly exploited methods (BD, deoxycholate surfactant in a high-pressure liquid exfoliation, and BS using glycine in ball-milling exfoliation) to elucidate immunological end-points common to both MoS2 and to demonstrate the need for biological verification for end-users who may require a change of supplier. We report higher histamine production in human basophils with MoS2. No effects on either surface basophil activation markers CD63 and CD203c or reactive oxygen species (ROS) production and cell viability were observed. However, different cytokine production patterns were evidenced. IL-6 and IL-1ß but not TNF and GM-CSF were increased for both MoS2. BS-MoS2 increased IL-4, while BD-MoS2 decreased IL-4 and increased IL-13. Molybdate ion itself only increased IL-1ß and IL-4. Deoxycholate surfactant decreased viability at 18 h and increased ROS upon basophil activation. Therefore, these results demonstrate the safety of MoS2 in human basophils in general and highlight the importance of considering manufacturer additives and variability when selecting and investigating 2D materials such as MoS2.


Subject(s)
Basophils , Hypersensitivity , Humans , Molybdenum/metabolism , Interleukin-4/metabolism , Reactive Oxygen Species/metabolism , Hypersensitivity/metabolism , Deoxycholic Acid/metabolism
7.
Energy Fuels ; 36(16): 9321-9328, 2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36016761

ABSTRACT

Lithium-sulfur battery of practical interest requires thin-layer support to achieve acceptable volumetric energy density. However, the typical aluminum current collector of Li-ion battery cannot be efficiently used in the Li/S system due to the insulating nature of sulfur and a reaction mechanism involving electrodeposition of dissolved polysulfides. We study the electrochemical behavior of a Li/S battery using a carbon-coated Al current collector in which the low thickness, the high electronic conductivity, and, at the same time, the host ability for the reaction products are allowed by a binder-free few-layer graphene (FLG) substrate. The FLG enables a sulfur electrode having a thickness below 100 µm, fast kinetics, low impedance, and an initial capacity of 1000 mAh gS -1 with over 70% retention after 300 cycles. The Li/S cell using FLG shows volumetric and gravimetric energy densities of 300 Wh L-1 and 500 Wh kg-1, respectively, which are values well competing with commercially available Li-ion batteries.

8.
Nanoscale ; 13(6): 3841-3852, 2021 Feb 14.
Article in English | MEDLINE | ID: mdl-33566041

ABSTRACT

Graphene is a one-atom-thick sheet of carbon atoms arranged in a honeycomb pattern and its unique and amazing properties make it suitable for a wide range of applications ranging from electronic devices to food packaging. However, the biocompatibility of graphene is dependent on the complex interplay of its several physical and chemical properties. The main aim of the present study is to highlight the importance of integrating different characterization techniques to describe the potential release of airborne graphene flakes in a graphene processing and production research laboratory. Specifically, the production and processing (i.e., drying) of few-layer graphene (FLG) through liquid-phase exfoliation of graphite are analysed by integrated characterization techniques. For this purpose, the exposure measurement strategy was based on the multi-metric tiered approach proposed by the Organization for Economic Cooperation and Development (OECD) via integrating high-frequency real-time measurements and personal sampling. Particle number concentration, average diameter and lung deposition surface area time series acquired in the worker's personal breathing zone (PBZ) were compared simultaneously to background measurements, showing the potential release of FLG. Then, electron microscopy techniques and Raman spectroscopy were applied to characterize particles collected by personal inertial impactors to investigate the morphology, chemical composition and crystal structure of rare airborne graphene flakes. The gathered information provides a valuable basis for improving risk management strategies in research and industrial laboratories.

9.
RSC Adv ; 11(56): 35051-35060, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-35493174

ABSTRACT

The printing of three-dimensional (3D) porous electrodes for Li-ion batteries is considered a key driver for the design and realization of advanced energy storage systems. While different 3D printing techniques offer great potential to design and develop 3D architectures, several factors need to be addressed to print 3D electrodes, maintaining an optimal trade-off between electrochemical and mechanical performances. Herein, we report the first demonstration of 3D printed Si-based electrodes fabricated using a simple and cost-effective fused deposition modelling (FDM) method, and implemented as anodes in Li-ion batteries. To fulfil the printability requirement while maximizing the electrochemical performance, the composition of the FDM filament has been engineered using polylactic acid as the host polymeric matrix, a mixture of carbon black-doped polypyrrole and wet-jet milling exfoliated few-layer graphene flakes as conductive additives, and Si nanoparticles as the active material. The creation of a continuous conductive network and the control of the structural properties at the nanoscale enabled the design and realization of flexible 3D printed anodes, reaching a specific capacity up to ∼345 mA h g-1 at the current density of 20 mA g-1, together with a capacity retention of 96% after 350 cycles. The obtained results are promising for the fabrication of flexible polymeric-based 3D energy storage devices to meet the challenges ahead for the design of next-generation electronic devices.

10.
Nanoscale ; 12(14): 7782-7791, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32215447

ABSTRACT

Multifunctional polymer composites with anisotropic properties are attracting interest as they fulfil the growing demand of multitasking materials. In this work, anisotropic polymer composites have been fabricated by combining the layer-by-layer (LBL) filtration method with the alternative assembling of carbon nanotubes (CNTs) and hexagonal boron nitride flakes (hBN) on natural rubber latex particles (NR). The layered composites exhibit anisotropic thermal and electrical conductivities, which are tailored through the layer formulations. The best composite consists of four layers of NR modified with 8 phr (parts per Hundred Rubber) CNTs (∼7.4 wt%) and four alternate layers with 12 phr hBN (∼10.7 wt%). The composites exhibit an electromagnetic interference (EMI) shielding effectiveness of 22.41 ± 0.14 dB mm-1 at 10.3 GHz and a thermal conductivity equal to 0.25 W m-1 K-1. Furthermore, when the layered composite is used as an electrical thermal heater the surface reaches a stable temperature of ∼103 °C in approx. 2 min, with an input bias of 2.5 V.

11.
Chemistry ; 26(29): 6715-6725, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32216144

ABSTRACT

One of the applications of graphene in which its scalable production is of utmost importance is the development of polymer composites. Among the techniques used to produce graphene flakes, the liquid-phase exfoliation (LPE) of graphite stands out due to its versatility and scalability. However, solvents suitable for the LPE process are generally toxic and have a high boiling point, making the processing challenging. The use of low boiling point solvents could be convenient for the processing, due to the easiness of their removal. In this study, the use of poly(methyl methacrylate) (PMMA) as a stabilizing agent is proposed for the production of graphene flakes in a low boiling point solvent, that is, acetone. The graphene dispersions produced in the mixture acetone-PMMA have higher concentration, +175 %, and contain a higher percentage of few-layer graphene flakes (<5 layers), that is, +60 %, compared to the dispersions prepared in acetone. The as-produced graphene dispersions are used to develop graphene/acrylonitrile-butadiene-styrene composites. The mechanical properties of the pristine polymer are improved, that is, +22 % in the Young's modulus, by adding 0.01 wt. % of graphene flakes. Moreover, a decrease of ≈20 % in the oxygen permeability is obtained by using 0.1 wt. % of graphene flakes filler, compared to the unloaded matrix.

12.
ChemSusChem ; 13(6): 1593-1602, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-31647201

ABSTRACT

Lithium-sulfur batteries are the most promising candidates for next-generation energy storage devices owing to their high theoretical specific capacity of 1675 mAh g-1 and high theoretical energy density of approximately 3500 Wh kg-1 . However, the lack of cathode active materials with appropriate electrical conductivities and stability coupled with an inexpensive and industrially compatible production process has so far hindered the development of practical devices. Here, a facile preparation pathway is reported for the production of a sulfur-carbon composite active material by drying a mixture of highly conductive few-layer graphene (FLG) flakes (produced by exploiting an innovative wet jet milling process with a yield of ≈100 % and production capability of ≈23.5 g h-1 ) with elemental sulfur, using ethanol as an environmentally friendly solvent. The designed sulfur-FLG composite shows excellent electrochemical results. The assembled lithium-sulfur battery exhibits a stable rate capability up to a current rate of 2C, a coulombic efficiency approaching 100 % for 300 cycles at the current rate of C/4 (420 mA g-1 ), and a long cycle life up to 500 cycles delivering around 600 mAh g-1 at 2C (3350 mA g-1 ).

13.
Chempluschem ; 84(7): 882-892, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31943980

ABSTRACT

The fabrication of electrochemical double-layer capacitors (EDLCs) with high areal capacitance relies on the use of elevated mass loadings of highly porous active materials. Herein, we demonstrate a high-throughput manufacturing of graphene/carbon nanotubes hybrid EDLCs. The wet-jet milling (WJM) method is exploited to exfoliate the graphite into single-few-layer graphene flakes (WJM-G) in industrial volumes (production rate ca. 0.5 kg/day). Commercial single-/double-walled carbon nanotubes (SDWCNTs) are mixed with graphene flakes in order to act as spacers between the flakes during their film formation. The WJM-G/SDWCNTs films are obtained by one-step vacuum filtration of the material dispersions, resulting in self-standing, metal- and binder-free flexible EDLC electrodes with high active material mass loadings up to around 30 mg cm-2 . The corresponding symmetric WJM-G/SDWCNTs EDLCs exhibit electrode energy densities of 539 µWh cm-2 at 1.3 mW cm-2 and operating power densities up to 532 mW cm-2 (outperforming most of the reported EDLC technologies). The EDCLs show excellent cycling stability and outstanding flexibility even in highly folded states (up to 180°).

14.
Small ; 14(24): e1800227, 2018 06.
Article in English | MEDLINE | ID: mdl-29756263

ABSTRACT

The biotransformation and biological impact of few layer graphene (FLG) and graphene oxide (GO) are studied, following ingestion as exposure route. An in vitro digestion assay based on a standardized operating procedure (SOP) is exploited. The assay simulates the human ingestion of nanomaterials during their dynamic passage through the different environments of the gastrointestinal tract (salivary, gastric, intestinal). Physical-chemical changes of FLG and GO during digestion are assessed by Raman spectroscopy. Moreover, the effect of chronic exposure to digested nanomaterials on integrity and functionality of an in vitro model of intestinal barrier is also determined according to a second SOP. These results show a modulation of the aggregation state of FLG and GO nanoflakes after experiencing the complex environments of the different digestive compartments. In particular, chemical doping effects are observed due to FLG and GO interaction with digestive juice components. No structural changes/degradation of the nanomaterials are detected, suggesting that they are biopersistent when administered by oral route. Chronic exposure to digested graphene does not affect intestinal barrier integrity and is not associated with inflammation and cytotoxicity, though possible long-term adverse effects cannot be ruled out.


Subject(s)
Graphite/administration & dosage , Graphite/pharmacology , Administration, Oral , Biotransformation , Caco-2 Cells , Filaggrin Proteins , Humans , Inflammation/pathology , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Spectrum Analysis, Raman
15.
Small ; 14(26): e1800749, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29845748

ABSTRACT

Single- and few-layered InSe flakes are produced by the liquid-phase exfoliation of ß-InSe single crystals in 2-propanol, obtaining stable dispersions with a concentration as high as 0.11 g L-1 . Ultracentrifugation is used to tune the morphology, i.e., the lateral size and thickness of the as-produced InSe flakes. It is demonstrated that the obtained InSe flakes have maximum lateral sizes ranging from 30 nm to a few micrometers, and thicknesses ranging from 1 to 20 nm, with a maximum population centered at ≈5 nm, corresponding to 4 Se-In-In-Se quaternary layers. It is also shown that no formation of further InSe-based compounds (such as In2 Se3 ) or oxides occurs during the exfoliation process. The potential of these exfoliated-InSe few-layer flakes as a catalyst for the hydrogen evolution reaction (HER) is tested in hybrid single-walled carbon nanotubes/InSe heterostructures. The dependence of the InSe flakes' morphologies, i.e., surface area and thickness, on the HER performances is highlighted, achieving the best efficiencies with small flakes offering predominant edge effects. The theoretical model unveils the origin of the catalytic efficiency of InSe flakes, and correlates the catalytic activity to the Se vacancies at the edge of the flakes.

16.
ACS Appl Mater Interfaces ; 10(21): 18192-18201, 2018 May 30.
Article in English | MEDLINE | ID: mdl-29733189

ABSTRACT

Fluorescence based on quantum confinement is a property restricted to the nanoscopic range. The incorporation of nanoparticles in a three-dimensional polymeric network could afford macroscopic scaffolds that show nanoscopic properties. Moreover, if these scaffolds are based on strong bonds, the stability of the resulting materials can be preserved, thus enhancing their final applications. We report for the first time the preparation of a graphene quantum dot (GQD) composite based on a cationic covalent network. This new material has unusual features: (i) the final composite remains stable after several swelling-deswelling cycles, thus demonstrating strong interactions between GQDs and the polymeric material, and therefore it could be used as a portable system. (ii) Fluorescence emission in the composite and in solution is quasi-independent to the excitation wavelength. (iii) However, and in contrast to the behavior observed in GQD solutions, the fluorescence of the composite remains unaltered over a wide pH range and in the presence of different ions commonly found in tap water. (iv) Fluorescence quenching is only observed as a consequence of molecules that bear aromatic systems, and this could be applied to the preparation of in situ water sensors.

17.
ACS Nano ; 11(4): 3517-3531, 2017 04 25.
Article in English | MEDLINE | ID: mdl-28240547

ABSTRACT

The development of large-scale production methods of two-dimensional (2D) crystals, with on-demand control of the area and thickness, is mandatory to fulfill the potential applications of such materials for photovoltaics. Inverted bulk heterojunction (BHJ) organic solar cell (OSC), which exploits a polymer-fullerene binary blend as the active material, is one potentially important application area for 2D crystals. A large ongoing effort is indeed currently devoted to the introduction of 2D crystals in the binary blend to improve the charge transport properties. While it is expected that the nanoscale domains size of the different components of the blend will significantly impact the performance of the OSC, to date, there is no evidence of quantitative information on the interplay between 2D crystals and fullerene domains size. Here, we demonstrate that by matching the size of WSe2 few-layer 2D crystals, produced by liquid-phase exfoliation, with that of the PC71BM fullerene domain in BHJ OSCs, we obtain power conversion efficiencies (PCEs) of ∼9.3%, reaching a 15% improvement with respect to standard binary devices (PCE = 8.10%), i.e., without the addition of WSe2 flakes. This is the highest ever reported PCE for 2D material-based OSCs, obtained thanks to the enhanced exciton generation and exciton dissociation at the WSe2-fullerene interface and also electron extraction to the back metal contact as a consequence of a balanced charge carriers mobility. These results push forward the implementation of transition-metal dichalcogenides to boost the performance of BHJ OSCs.

18.
ChemSusChem ; 9(18): 2609-2619, 2016 Sep 22.
Article in English | MEDLINE | ID: mdl-27629238

ABSTRACT

Interface engineering is performed by the addition of graphene and related 2 D materials (GRMs) into perovskite solar cells (PSCs), leading to improvements in the power conversion efficiency (PCE). By doping the mesoporous TiO2 layer with graphene flakes (mTiO2 +G), produced by liquid-phase exfoliation of pristine graphite, and by inserting graphene oxide (GO) as an interlayer between the perovskite and hole-transport layers, using a two-step deposition procedure in air, we achieved a PCE of 18.2 %. The obtained PCE value mainly results from improved charge-carrier injection/collection with respect to conventional PSCs. Although the addition of GRMs does not influence the shelf life, it is beneficial for the stability of PSCs under several aging conditions. In particular, mTiO2 +G PSCs retain more than 88 % of the initial PCE after 16 h of prolonged 1 sun illumination at the maximum power point. Moreover, when subjected to prolonged heating at 60 °C, the GO-based structures show enhanced stability with respect to mTiO2 +G PSCs, as a result of thermally induced modification at the mTiO2 +G/perovskite interface. The exploitation of GRMs in the form of dispersions and inks opens the way for scalable large-area production, advancing the possible commercialization of PSCs.


Subject(s)
Calcium Compounds/chemistry , Electric Power Supplies , Graphite/chemistry , Oxides/chemistry , Solar Energy , Titanium/chemistry , Drug Stability , Models, Molecular , Molecular Conformation , Temperature
19.
Nano Lett ; 16(7): 4217-23, 2016 07 13.
Article in English | MEDLINE | ID: mdl-27231980

ABSTRACT

The structural and compositional stabilities of two-dimensional (2D) Bi2Te3 and Bi2Se3 nanocrystals, produced by both colloidal synthesis and by liquid phase exfoliation, were studied by in situ transmission electron microscopy (TEM) during annealing at temperatures between 350 and 500 °C. The sublimation process induced by annealing is structurally and chemically anisotropic and takes place through the preferential dismantling of the prismatic {011̅0} type planes, and through the preferential sublimation of Te (or Se). The observed anisotropic sublimation is independent of the method of nanocrystal's synthesis, their morphology, or the presence of surfactant molecules on the nanocrystals surface. A thickness-dependent depression in the sublimation point has been observed with nanocrystals thinner than about 15 nm. The Bi2Se3 nanocrystals were found to sublimate below 280 °C, while the Bi2Te3 ones sublimated at temperatures between 350 and 450 °C, depending on their thickness, under the vacuum conditions in the TEM column. Density functional theory calculations confirm that the sublimation of the prismatic {011̅0} facets is more energetically favorable. Within the level of modeling employed, the sublimation occurs at a rate about 700 times faster than the sublimation of the {0001} planes at the annealing temperatures used in this work. This supports the distinctly anisotropic mechanisms of both sublimation and growth of Bi2Te3 and Bi2Se3 nanocrystals, known to preferentially adopt a 2D morphology. The anisotropic sublimation behavior is in agreement with the intrinsic anisotropy in the surface free energy brought about by the crystal structure of Bi2Te3 or Bi2Se3.

20.
Small ; 11(32): 3985-94, 2015 Aug 26.
Article in English | MEDLINE | ID: mdl-25959808

ABSTRACT

Understanding human health risk associated with the rapidly emerging graphene-based nanomaterials represents a great challenge because of the diversity of applications and the wide range of possible ways of exposure to this type of materials. Herein, the biodegradation of graphene oxide (GO) sheets is reported by using myeloperoxidase (hMPO) derived from human neutrophils in the presence of a low concentration of hydrogen peroxide. The degradation capability of the enzyme on three different GO samples containing different degree of oxidation on their graphenic lattice, leading to a variable dispersibility in aqueous media is compared. hMPO fails in degrading the most aggregated GO, but succeeds to completely metabolize highly dispersed GO samples. The spectroscopy and microscopy analyses provide unambiguous evidence for the key roles played by hydrophilicity, negative surface charge, and colloidal stability of the aqueous GO in their biodegradation by hMPO catalysis.


Subject(s)
Graphite/chemistry , Oxides/chemistry , Peroxidase/metabolism , Biodegradation, Environmental , Humans , Particle Size , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL
...