Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Pathogens ; 10(11)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34832608

ABSTRACT

Plasmodium falciparum, the most virulent of the human malaria parasite, is responsible for high mortality rates worldwide. We studied the M1 alanyl-aminopeptidase of this protozoan (PfA-M1), which is involved in the final stages of hemoglobin cleavage, an essential process for parasite survival. Aiming to help in the rational development of drugs against this target, we developed a new strain of P. falciparum overexpressing PfA-M1 without the signal peptide (overPfA-M1). The overPfA-M1 parasites showed a 2.5-fold increase in proteolytic activity toward the fluorogenic substrate alanyl-7-amido-4-methylcoumarin, in relation to the wild-type group. Inhibition studies showed that overPfA-M1 presented a lower sensitivity against the metalloaminopeptidase inhibitor bestatin and to other recombinant PfA-M1 inhibitors, in comparison with the wild-type strain, indicating that PfA-M1 is a target for the in vitro antimalarial activity of these compounds. Moreover, overPfA-M1 parasites present a decreased in vitro growth, showing a reduced number of merozoites per schizont, and also a decrease in the iRBC area occupied by the parasite in trophozoite and schizont forms when compared to the controls. Interestingly, the transgenic parasite displays an increase in the aminopeptidase activity toward Met-, Ala-, Leu- and Arg-7-amido-4-methylcoumarin. We also investigated the potential role of calmodulin and cysteine proteases in PfA-M1 activity. Taken together, our data show that the overexpression of PfA-M1 in the parasite cytosol can be a suitable tool for the screening of antimalarials in specific high-throughput assays and may be used for the identification of intracellular molecular partners that modulate their activity in P. falciparum.

2.
Microb Cell ; 8(10): 239-246, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34692819

ABSTRACT

Several microbial metalo-aminopeptidases are emerging as novel targets for the treatment of human infectious diseases. Some of them are well validated as targets and some are not; some are essential enzymes and others are important for virulence and pathogenesis. For another group, it is not clear if their enzymatic activity is involved in the critical functions that they mediate. But one aspect has been established: they display relevant roles in bacteria and protozoa that could be targeted for therapeutic purposes. This work aims to describe these biological functions for several microbial metalo-aminopeptidases.

3.
J Proteomics ; 165: 75-92, 2017 08 08.
Article in English | MEDLINE | ID: mdl-28602552

ABSTRACT

Proteases and their inhibitors have become molecules of increasing fundamental and applicative value. Here we report an integrated strategy to identify and analyze such inhibitors from Caribbean marine invertebrates extracts by a fast and sensitive functional proteomics-like approach. The strategy works in three steps: i) multiplexed enzymatic inhibition kinetic assays, ii) Intensity Fading MALDI-TOF MS to establish a link between inhibitory molecules and the related MALDI signal(s) detected in the extract(s), and iii) ISD-CID-T3 MS fragmentation on the parent MALDI signals selected in the previous step, enabling the partial or total top-down sequencing of the molecules. The present study has allowed validation of the whole approach, identification of a substantial number of novel protein protease inhibitors, as well as full or partial sequencing of reference molecular species and of many unknown ones, respectively. Such inhibitors correspond to six protease subfamilies (metallocarboxypeptidases-A and -B, pepsin, papain, trypsin and subtilisin), are small (1-10KDa) disulfide-rich proteins, and have been found at diverse frequencies among the invertebrates (13 to 41%). The overall procedure could be tailored to other enzyme-inhibitor and protein interacting systems, analyzing samples at medium-throughput level and leading to the functional and structural characterization of proteinaceous ligands from complex biological extracts. SIGNIFICANCE: Invertebrate animals, and marine ones among, display a remarkable diversity of species and contained biomolecules. Many of their proteins-peptides have high biological, biotechnological and biomedical potential interest but, because of the lack of sequenced genomes behind, their structural and functional characterization constitutes a great challenge. Here, looking at the small, disulfide-rich, proteinaceous inhibitors of proteases found in them, it is shown that such problem can be significatively facilitated by integrative multiplexed enzymatic assays, affinity-based Intensity-Fading (IF-) MALDI-TOF mass spectrometry (MS), and on-line MS fragmentation, in a fast and easy approach.


Subject(s)
Protease Inhibitors/analysis , Proteomics/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Aquatic Organisms , Disulfides , Invertebrates , Kinetics , Ligands
4.
J Biol Chem ; 287(12): 9250-8, 2012 Mar 16.
Article in English | MEDLINE | ID: mdl-22294694

ABSTRACT

NvCI is a novel exogenous proteinaceous inhibitor of metallocarboxypeptidases from the marine snail Nerita versicolor. The complex between human carboxypeptidase A4 and NvCI has been crystallized and determined at 1.7 Å resolution. The NvCI structure defines a distinctive protein fold basically composed of a two-stranded antiparallel ß-sheet connected by three loops and the inhibitory C-terminal tail and stabilized by three disulfide bridges. NvCI is a tight-binding inhibitor that interacts with the active site of the enzyme in a substrate-like manner. NvCI displays an extended and novel interface with human carboxypeptidase A4, responsible for inhibitory constants in the picomolar range for some members of the M14A subfamily of carboxypeptidases. This makes NvCI the strongest inhibitor reported so far for this family. The structural homology displayed by the C-terminal tails of different carboxypeptidase inhibitors represents a relevant example of convergent evolution.


Subject(s)
Carboxypeptidases A/antagonists & inhibitors , Carboxypeptidases A/chemistry , Enzyme Inhibitors/chemistry , Snails/chemistry , Amino Acid Sequence , Animals , Binding Sites , Carboxypeptidases A/genetics , Carboxypeptidases A/metabolism , Crystallography, X-Ray , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Humans , Kinetics , Models, Molecular , Molecular Sequence Data , Snails/metabolism
5.
Article in English | MEDLINE | ID: mdl-16546427

ABSTRACT

Human neutrophil elastase inhibition was detected in a crude extract of the marine snail Cenchritis muricatus (Gastropoda, Mollusca). This inhibitory activity remained after heating this extract at 60 degrees C for 30 min. From this extract, three human neutrophil elastase inhibitors (designated CmPI-I, CmPI-II and CmPI-III) were purified by affinity and reversed-phase chromatographies. Homogeneity of CmPI-I and CmPI-II was confirmed, while CmPI-III showed a single peak in reversed-phase chromatography, but heterogeneity in SDS-PAGE with preliminary molecular masses in the range of 18.4 to 22.0 kDa. In contrast, MALDI-TOF mass spectrometry of CmPI-I and CmPI-II showed that these inhibitors are molecules of low molecular mass, 5576 and 5469 Da, respectively. N-terminal amino acid sequences of CmPI-I (6 amino acids) and CmPI-II (20 amino acids) were determined. Homology to Kazal-type protease inhibitors was preliminarily detected for CmPI-II. Both inhibitors, CmPI-I and CmPI-II are able to inhibit human neutrophil elastase strongly, with equilibrium dissociation constant (Ki) values of 54.2 and 1.6 nM, respectively. In addition, trypsin and pancreatic elastase were also inhibited, but not plasma kallikrein or thrombin. CmPI-I and CmPI-II are the first human neutrophil elastase inhibitors described in a mollusk.


Subject(s)
Leukocyte Elastase/antagonists & inhibitors , Serine Proteinase Inhibitors/isolation & purification , Serine Proteinase Inhibitors/pharmacology , Snails/chemistry , Amino Acid Sequence , Animals , Electrophoresis, Polyacrylamide Gel , Humans , Molecular Sequence Data , Oceans and Seas , Pancreatic Elastase/antagonists & inhibitors , Plasma Kallikrein/antagonists & inhibitors , Sequence Homology, Amino Acid , Serine Proteinase Inhibitors/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Thrombin/antagonists & inhibitors , Trypsin Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...