Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Clin Exp Allergy ; 52(4): 550-560, 2022 04.
Article in English | MEDLINE | ID: mdl-35212067

ABSTRACT

RATIONALE: Rhinoviruses are the major precipitant of asthma exacerbations and individuals with asthma experience more severe/prolonged rhinovirus infections. Concurrent viral infection and allergen exposure synergistically increase exacerbation risk. Although dendritic cells orchestrate immune responses to both virus and allergen, little is known about their role in viral asthma exacerbations. OBJECTIVES: To characterize dendritic cell populations present in the lower airways, and to assess whether their numbers are altered in asthma compared to healthy subjects prior to infection and during rhinovirus-16 infection. METHODS: Moderately-severe atopic asthmatic patients and healthy controls were experimentally infected with rhinovirus-16. Bronchoalveolar lavage was collected at baseline, day 3 and day 8 post infection and dendritic cells isolated using fluorescence activated cell sorting. MEASUREMENTS AND MAIN RESULTS: Numbers of type I conventional dendritic cells, which cross prime CD8+ T helper cells and produce innate interferons, were significantly reduced in the lower airways of asthma patients compared to healthy controls at baseline. This reduction was associated serum IgE at baseline and with reduced numbers of CD8+ T helper cells and with increased viral replication, airway eosinophils and reduced lung function during infection. IgE receptor expression on lower airway plasmacytoid dendritic cells was significantly increased in asthma, consistent with a reduced capacity to produce innate interferons. CONCLUSIONS: Reduced numbers of anti-viral type I conventional dendritic cells in asthma are associated with adverse outcomes during rhinovirus infection. This, with increased FcεR1α expression on lower airway plasmacytoid DCs could mediate the more permissive respiratory viral infection observed in asthma patients.


Subject(s)
Asthma , Picornaviridae Infections , Dendritic Cells , Humans , Rhinovirus , Severity of Illness Index
2.
Am J Respir Crit Care Med ; 204(11): 1259-1273, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34469272

ABSTRACT

Rationale: Type 2 innate lymphoid cells (ILC2s) are significant sources of type 2 cytokines, which are implicated in the pathogenesis of asthma and asthma exacerbations. The role of ILC2s in virus-induced asthma exacerbations is not well characterized. Objectives: To characterize pulmonary ILC responses following experimental rhinovirus challenge in patients with moderate asthma and healthy subjects. Methods: Patients with moderate asthma and healthy subjects were inoculated with rhinovirus-16 and underwent bronchoscopy at baseline and at Day 3, and Day 8 after inoculation. Pulmonary ILC1s and ILC2s were quantified in bronchoalveolar lavage using flow cytometry. The ratio of bronchoalveolar lavage ILC2:ILC1 was assessed to determine their relative contributions to the clinical and immune response to rhinovirus challenge. Measurements and Main Results: At baseline, ILC2s were significantly higher in patients with asthma than in healthy subjects. At Day 8, ILC2s significantly increased from baseline in both groups, which was significantly higher in patients with asthma than in healthy subjects (all comparisons P < 0.05). In healthy subjects, ILC1s increased from baseline at Day 3 (P = 0.001), while in patients with asthma, ILC1s increased from baseline at Day 8 (P = 0.042). Patients with asthma had significantly higher ILC2:ILC1 ratios at baseline (P = 0.024) and Day 8 (P = 0.005). Increased ILC2:ILC1 ratio in patients with asthma correlated with clinical exacerbation severity and type 2 cytokines in nasal mucosal lining fluid. Conclusions: An ILC2-predominant inflammatory profile in patients with asthma was associated with increased severity and duration of rhinovirus infection compared with healthy subjects, supporting the potential role of ILC2s in the pathogenesis of virus-induced asthma exacerbations.


Subject(s)
Asthma/etiology , Asthma/immunology , Asthma/virology , Disease Progression , Immunity, Innate , Picornaviridae Infections/complications , Virulence Factors/immunology , Adolescent , Adult , Female , Humans , Male , Middle Aged , Young Adult
3.
EBioMedicine ; 54: 102734, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32279057

ABSTRACT

BACKGROUND: Macrophages (Mф) can be M1/M2 polarized by Th1/2 signals, respectively. M2-like Mф are thought to be important in asthma pathogenesis, and M1-like in anti-infective immunity, however their roles in virus-induced asthma exacerbations are unknown. Our objectives were (i) to assess polarised Mф phenotype responses to rhinovirus (RV) infection in vitro and (ii) to assess Mф phenotypes in healthy subjects and people with asthma before and during experimental RV infection in vivo. METHODS: We investigated characteristics of polarized/unpolarized human monocyte-derived Mф (MDM, from 3-6 independent donors) in vitro and evaluated frequencies of M1/M2-like bronchoalveolar lavage (BAL) Mф in experimental RV-induced asthma exacerbation in 7 healthy controls and 17 (at baseline) and 18 (at day 4 post infection) people with asthma. FINDINGS: We observed in vitro: M1-like but not M2-like or unpolarized MDM are potent producers of type I and III interferons in response to RV infection (P<0.0001), and M1-like are more resistant to RV infection (P<0.05); compared to M1-like, M2-like MDM constitutively produced higher levels of CCL22/MDC (P = 0.007) and CCL17/TARC (P<0.0001); RV-infected M1-like MDM were characterized as CD14+CD80+CD197+ (P = 0.002 vs M2-like, P<0.0001 vs unpolarized MDM). In vivo we found reduced percentages of M1-like CD14+CD80+CD197+ BAL Mф in asthma during experimental RV16 infection compared to baseline (P = 0.024). INTERPRETATION: Human M1-like BAL Mф are likely important contributors to anti-viral immunity and their numbers are reduced in patients with allergic asthma during RV-induced asthma exacerbations. This mechanism may be one explanation why RV-triggered clinical and pathologic outcomes are more severe in allergic patients than in healthy subjects. FUNDING: ERC FP7 Advanced grant 233015, MRC Centre Grant G1000758, Asthma UK grant 08-048, NIHR Biomedical Research Centre funding scheme, NIHR BRC Centre grant P26095, the Predicta FP7 Collaborative Project grant 260895, RSF grant 19-15-00272, Megagrant No 14.W03.31.0024.


Subject(s)
Asthma/immunology , Interferons/genetics , Macrophages, Alveolar/immunology , Picornaviridae Infections/complications , Asthma/etiology , Asthma/virology , Cells, Cultured , Chemokine CCL17/genetics , Chemokine CCL17/metabolism , Chemokine CCL22/genetics , Chemokine CCL22/metabolism , HeLa Cells , Humans , Interferons/metabolism , Macrophages, Alveolar/virology , Picornaviridae Infections/immunology , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism
4.
PLoS One ; 12(8): e0183864, 2017.
Article in English | MEDLINE | ID: mdl-28859129

ABSTRACT

Rhinovirus infection is associated with the majority of asthma exacerbations. The role of fractalkine in anti-viral (type 1) and pathogenic (type 2) responses to rhinovirus infection in allergic asthma is unknown. To determine whether (1) fractalkine is produced in airway cells and in peripheral blood leucocytes, (2) rhinovirus infection increases production of fractalkine and (3) levels of fractalkine differ in asthmatic compared to non-asthmatic subjects. Fractalkine protein and mRNA levels were measured in bronchoalveolar lavage (BAL) cells and peripheral blood mononuclear cells (PBMCs) from non-asthmatic controls (n = 15) and mild allergic asthmatic (n = 15) subjects. Protein levels of fractalkine were also measured in macrophages polarised ex vivo to give M1 (type 1) and M2 (type 2) macrophages and in BAL fluid obtained from mild (n = 11) and moderate (n = 14) allergic asthmatic and non-asthmatic control (n = 10) subjects pre and post in vivo rhinovirus infection. BAL cells produced significantly greater levels of fractalkine than PBMCs. Rhinovirus infection increased production of fractalkine by BAL cells from non-asthmatic controls (P<0.01) and in M1-polarised macrophages (P<0.05), but not in BAL cells from mild asthmatics or in M2 polarised macrophages. Rhinovirus induced fractalkine in PBMCs from asthmatic (P<0.001) and healthy control subjects (P<0.05). Trends towards induction of fractalkine in moderate asthmatic subjects during in vivo rhinovirus infection failed to reach statistical significance. Fractalkine may be involved in both immunopathological and anti-viral immune responses to rhinovirus infection. Further investigation into how fractalkine is regulated across different cell types and into the effect of stimulation including rhinovirus infection is warranted to better understand the precise role of this unique dual adhesion factor and chemokine in immune cell recruitment.


Subject(s)
Asthma/immunology , Chemokine CX3CL1/immunology , Host-Pathogen Interactions , Leukocytes, Mononuclear/immunology , Picornaviridae Infections/immunology , Rhinovirus/immunology , Adult , Asthma/complications , Asthma/genetics , Asthma/virology , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/virology , Case-Control Studies , Chemokine CX3CL1/genetics , Female , Gene Expression , Humans , Leukocytes, Mononuclear/pathology , Leukocytes, Mononuclear/virology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/pathology , Macrophages, Alveolar/virology , Male , Picornaviridae Infections/complications , Picornaviridae Infections/genetics , Picornaviridae Infections/virology , RNA, Messenger/genetics , RNA, Messenger/immunology , Respiratory System/immunology , Respiratory System/pathology , Respiratory System/virology , Rhinovirus/growth & development , Severity of Illness Index
5.
EBioMedicine ; 19: 128-138, 2017 May.
Article in English | MEDLINE | ID: mdl-28373098

ABSTRACT

BACKGROUND: Rhinovirus infection is a major cause of asthma exacerbations. OBJECTIVES: We studied nasal and bronchial mucosal inflammatory responses during experimental rhinovirus-induced asthma exacerbations. METHODS: We used nasosorption on days 0, 2-5 and 7 and bronchosorption at baseline and day 4 to sample mucosal lining fluid to investigate airway mucosal responses to rhinovirus infection in patients with allergic asthma (n=28) and healthy non-atopic controls (n=11), by using a synthetic absorptive matrix and measuring levels of 34 cytokines and chemokines using a sensitive multiplex assay. RESULTS: Following rhinovirus infection asthmatics developed more upper and lower respiratory symptoms and lower peak expiratory flows compared to controls (all P<0.05). Asthmatics also developed higher nasal lining fluid levels of an anti-viral pathway (including IFN-γ, IFN-λ/IL-29, CXCL11/ITAC, CXCL10/IP10 and IL-15) and a type 2 inflammatory pathway (IL-4, IL-5, IL-13, CCL17/TARC, CCL11/eotaxin, CCL26/eotaxin-3) (area under curve day 0-7, all P<0.05). Nasal IL-5 and IL-13 were higher in asthmatics at day 0 (P<0.01) and levels increased by days 3 and 4 (P<0.01). A hierarchical correlation matrix of 24 nasal lining fluid cytokine and chemokine levels over 7days demonstrated expression of distinct interferon-related and type 2 pathways in asthmatics. In asthmatics IFN-γ, CXCL10/IP10, CXCL11/ITAC, IL-15 and IL-5 increased in bronchial lining fluid following viral infection (all P<0.05). CONCLUSIONS: Precision sampling of mucosal lining fluid identifies robust interferon and type 2 responses in the upper and lower airways of asthmatics during an asthma exacerbation. Nasosorption and bronchosorption have potential to define asthma endotypes in stable disease and at exacerbation.


Subject(s)
Asthma/immunology , Bronchi/immunology , Cytokines/immunology , Nasal Mucosa/immunology , Picornaviridae Infections/immunology , Rhinovirus , Adult , Asthma/virology , Female , Humans , Male , Middle Aged , Nasal Mucosa/virology , Viral Load , Young Adult
6.
Am J Respir Crit Care Med ; 195(12): 1586-1596, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28085492

ABSTRACT

RATIONALE: Newly characterized type 2 innate lymphoid cells (ILC2s) display potent type 2 effector functionality; however, their contribution to allergic airways inflammation and asthma is poorly understood. Mucosal biopsy used to characterize the airway mucosa is invasive, poorly tolerated, and does not allow for sequential sampling. OBJECTIVES: To assess the role of ILC2s during nasal allergen challenge in subjects with allergic rhinitis using novel noninvasive methodology. METHODS: We used a human experimental allergen challenge model, with flow cytometric analysis of nasal curettage samples, to assess the recruitment of ILC2s and granulocytes to the upper airways of subjects with atopy and healthy subjects after allergen provocation. Soluble mediators in the nasal lining fluid were measured using nasosorption. MEASUREMENTS AND MAIN RESULTS: After an allergen challenge, subjects with atopy displayed rapid induction of upper airway symptoms, an enrichment of ILC2s, eosinophils, and neutrophils, along with increased production of IL-5, prostaglandin D2, and eosinophil and T-helper type 2 cell chemokines compared with healthy subjects. The most pronounced ILC2 recruitment was observed in subjects with elevated serum IgE and airway eosinophilia. CONCLUSIONS: The rapid recruitment of ILC2s to the upper airways of allergic patients with rhinitis, and their association with key type 2 mediators, highlights their likely important role in the early allergic response to aeroallergens in the airways. The novel methodology described herein enables the analysis of rare cell populations from noninvasive serial tissue sampling.


Subject(s)
Allergens/immunology , Lymphocytes/immunology , Nasal Mucosa/immunology , Rhinitis, Allergic/immunology , Adolescent , Adult , Female , Flow Cytometry , Humans , Immunity, Innate/immunology , Male , Middle Aged , Th2 Cells/immunology , Young Adult
7.
Chest ; 149(1): 62-73, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25790167

ABSTRACT

BACKGROUND: Respiratory virus infections are commonly associated with COPD exacerbations, but little is known about the mechanisms linking virus infection to exacerbations. Pathogenic mechanisms in stable COPD include oxidative and nitrosative stress and reduced activity of histone deacetylase-2 (HDAC2), but their roles in COPD exacerbations is unknown. We investigated oxidative and nitrosative stress (O&NS) and HDAC2 in COPD exacerbations using experimental rhinovirus infection. METHODS: Nine subjects with COPD (Global Initiative for Chronic Obstructive Lung Disease stage II), 10 smokers, and 11 nonsmokers were successfully infected with rhinovirus. Markers of O&NS-associated cellular damage, and inflammatory mediators and proteases were measured in sputum, and HDAC2 activity was measured in sputum and bronchoalveolar macrophages. In an in vitro model, monocyte-derived THP-1 cells were infected with rhinovirus and nitrosylation and activity of HDAC2 was measured. RESULTS: Rhinovirus infection induced significant increases in airways inflammation and markers of O&NS in subjects with COPD. O&NS markers correlated with virus load and inflammatory markers. Macrophage HDAC2 activity was reduced during exacerbation and correlated inversely with virus load, inflammatory markers, and nitrosative stress. Sputum macrophage HDAC2 activity pre-infection was inversely associated with sputum virus load and inflammatory markers during exacerbation. Rhinovirus infection of monocytes induced nitrosylation of HDAC2 and reduced HDAC2 activity; inhibition of O&NS inhibited rhinovirus-induced inflammatory cytokines. CONCLUSIONS: O&NS, airways inflammation, and impaired HDAC2 may be important mechanisms of virus-induced COPD exacerbations. Therapies targeting these mechanisms offer potential new treatments for COPD exacerbations.


Subject(s)
Histone Deacetylase 2/metabolism , Oxidative Stress/physiology , Picornaviridae Infections/metabolism , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/metabolism , Rhinovirus , Case-Control Studies , Disease Progression , Female , Humans , Inflammation Mediators/metabolism , Male , Middle Aged , Nitrosation/physiology , Picornaviridae Infections/complications , Sputum , Viral Load
8.
EBioMedicine ; 2(1): 64-70, 2015 Jan.
Article in English | MEDLINE | ID: mdl-26137535

ABSTRACT

BACKGROUND: Rhinoviruses (RVs) are a major cause of common colds and induce exacerbations of asthma and chronic inflammatory lung diseases. METHODS: We expressed and purified recombinant RV coat proteins VP1-4, non-structural proteins as well as N-terminal fragments of VP1 from four RV strains (RV14, 16, 89, C) covering the three known RV groups (RV-A, RV-B and RV-C) and measured specific IgG-subclass-, IgA- and IgM-responses by ELISA in subjects with different severities of asthma or without asthma before and after experimental infection with RV16. FINDINGS: Before infection subjects showed IgG1 > IgA > IgM > IgG3 cross-reactivity with N-terminal fragments from the representative VP1 proteins of the three RV groups. Antibody levels were higher in the asthmatic group as compared to the non-asthmatic subjects. Six weeks after infection with RV16, IgG1 antibodies showed a group-specific increase towards the N-terminal VP1 fragment, but not towards other capsid and non-structural proteins, which was highest in subjects with severe upper and lower respiratory symptoms. INTERPRETATION: Our results demonstrate that increases of antibodies towards the VP1 N-terminus are group-specific and associated with severity of respiratory symptoms and suggest that it may be possible to develop serological tests for identifying causative RV groups.


Subject(s)
Antibodies, Viral/immunology , Asthma/immunology , Rhinovirus/immunology , Viral Proteins/immunology , Adult , Antibody Formation/immunology , Asthma/virology , Capsid Proteins/metabolism , Cross Reactions/immunology , Female , Genome, Viral , Humans , Immunoglobulin G/metabolism , Male , Middle Aged , Recombinant Proteins/metabolism , Rhinovirus/genetics , Young Adult
10.
Thorax ; 69(3): 240-6, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24127021

ABSTRACT

BACKGROUND: Defective rhinovirus (RV)-induced interferon (IFN)-ß and IFN-λ production and increased RV replication have been reported in primary human bronchial epithelial cells (HBECs) from subjects with asthma. How universal this defect is in asthma is unknown. Additionally, the IFN subtypes induced by RV infection in primary HBECs have not been comprehensively investigated. OBJECTIVE: To study RV induction of IFN-α, IFN-ß and IFN-λ and RV replication in HBECs from subjects with atopic asthma and healthy controls. METHODS: HBECs were obtained from subjects with asthma and healthy controls and infected with RV16 and RV1B, and cells and supernatants harvested at 8, 24 and 48h. IFN proteins were analysed by ELISA and IFN mRNA and viral RNA expression by quantitative PCR. Virus release was assessed in cell supernatants. RESULTS: IFN-ß and IFN-λ were the only IFNs induced by RV in HBECs and IFN-λ protein induction was substantially greater than IFN-ß. Induction of IFN-λ1 mRNA by RV16 at 48h was significantly greater in HBECs from subjects with asthma; otherwise there were no significant differences between subjects with asthma and controls in RV replication, or in induction of type I or III IFN protein or mRNA. CONCLUSIONS: IFN-λ and, to a lesser degree, IFN-ß are the major IFN subtypes induced by RV infection of HBECs. Neither defective IFN induction by RV nor increased RV replication was observed in the HBECs from subjects with well controlled asthma reported in this study.


Subject(s)
Antiviral Agents/therapeutic use , Asthma/immunology , Interferon-alpha/biosynthesis , Interferon-beta/biosynthesis , Rhinovirus/immunology , Adult , Asthma/metabolism , Asthma/virology , Bronchoalveolar Lavage , Case-Control Studies , Epithelial Cells/metabolism , Epithelial Cells/virology , Female , Humans , Male , Signal Transduction , Time Factors , Virus Replication/drug effects
11.
PLoS One ; 8(6): e65921, 2013.
Article in English | MEDLINE | ID: mdl-23824215

ABSTRACT

Defective Rhinovirus induced interferon-ß and interferon-λ production has been reported in bronchial epithelial cells from asthmatics but the mechanisms of defective interferon induction in asthma are unknown. Virus infection can induce interferon through Toll like Receptors (TLR)3, TLR7 and TLR8. The role of these TLRs in interferon induction in asthma is unclear. This objective of this study was to measure the type I and III interferon response to TLR in bronchial epithelial cells and peripheral blood cells from atopic asthmatics and non-atopic non-asthmatics. Bronchial epithelial cells and peripheral blood mononuclear cells from atopic asthmatic and non-atopic non-asthmatic subjects were stimulated with agonists to TLR3, TLR4 & TLRs7-9 and type I and III interferon and pro-inflammatory cytokine, interleukin(IL)-6 and IL-8, responses assessed. mRNA expression was analysed by qPCR. Interferon proteins were analysed by ELISA. Pro-inflammatory cytokines were induced by each TLR ligand in both cell types. Ligands to TLR3 and TLR7/8, but not other TLRs, induced interferon-ß and interferon-λ in bronchial epithelial cells. The ligand to TLR7/8, but not those to other TLRs, induced only type I interferons in peripheral blood mononuclear cells. No difference was observed in TLR induced interferon or pro-inflammatory cytokine production between asthmatic and non-asthmatic subjects from either cell type. TLR3 and TLR7/8,, stimulation induced interferon in bronchial epithelial cells and peripheral blood mononuclear cells. Interferon induction to TLR agonists was not observed to be different in asthmatics and non-asthmatics.


Subject(s)
Anti-Asthmatic Agents/therapeutic use , Asthma/metabolism , Interferons/biosynthesis , Toll-Like Receptors/metabolism , Trachea/metabolism , Asthma/blood , Asthma/drug therapy , Case-Control Studies , Humans
12.
J Allergy Clin Immunol ; 129(6): 1506-1514.e6, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22657407

ABSTRACT

BACKGROUND: Asthmatic patients have defective rhinovirus-induced IFN-ß and IFN-λ production from bronchial epithelial cells and IFN-λ from bronchoalveolar lavage (BAL) cells. Whether bronchoalveolar lavage cells have defective type I interferon responses to rhinovirus is unknown, as are mechanisms explaining defective rhinovirus interferon induction in asthmatic patients. OBJECTIVE: We sought to investigate rhinovirus induction of type I interferons in BAL and blood mononuclear cells from asthmatic patients and healthy subjects and to investigate mechanisms of any deficiency observed. METHODS: BAL and blood mononuclear cells from atopic asthmatic patients and healthy subjects were infected with rhinovirus ex vivo. Interferon proteins were analyzed by using ELISA. mRNA expression of key components of interferon induction pathways were analyzed by using quantitative PCR. RESULTS: Rhinovirus induction of type I interferon protein was delayed and deficient in BAL cells from asthmatic patients, and lower interferon levels were associated with greater airway hyperresponsiveness and skin prick test response positivity. Expression of Toll-like receptor (TLR) 3, TLR7, TLR8, retinoic acid-inducible gene I (RIG-I), melanoma differentiation-associated gene 5 (MDA-5), TIR domain-containing adapter-inducing IFN-ß (TRIF), myeloid differentiation primary response gene 88 (MyD88), caspase recruitment domain adaptor inducing IFN-ß (CARDIF), IL-1 receptor-associated kinase 4 (IRAK4), IκB kinase ß (IKKB), IκB kinase ι (IKKI), interferon regulatory factors 3 and 7, and rhinovirus induction of expression of the virus-inducible molecules TLR3, TLR7, RIG-I, and MDA-5 were not impaired in these interferon-deficient BAL cells in asthmatic patients. Defective rhinovirus interferon induction was not observed in blood mononuclear cells. CONCLUSIONS: Rhinovirus induction of type I interferons in BAL cells is delayed and deficient and might be a marker of more severe asthma. Defective rhinovirus interferon induction in asthmatic patients was not accompanied by differences in the expression or induction of key molecules implicated in viral induction of interferons.


Subject(s)
Asthma/immunology , Interferon-alpha/biosynthesis , Interferon-beta/biosynthesis , Rhinovirus/immunology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adult , Asthma/metabolism , Asthma/virology , Bronchoalveolar Lavage Fluid , Case-Control Studies , Epithelial Cells/metabolism , Epithelial Cells/virology , Female , Humans , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/virology , Male , RNA Helicases/metabolism , Receptors, Pattern Recognition/genetics , Receptors, Pattern Recognition/metabolism , Signal Transduction , Skin Tests , Time Factors , Toll-Like Receptor 3/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...