Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurochem ; 120(3): 396-407, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22044428

ABSTRACT

Aberrant dopamine release in the prefrontal cortex (PFC) is believed to underlie schizophrenia, but the mechanistic pathway through which a widely used antipsychotic, clozapine (Clz), evokes neurotransmitter-releasing electrical stimulation is unclear. We analyzed Clz-evoked regulation of neuronal activity in the PFC by stimulating axons in layers IV and V and recording the electrical effect in the post-synaptic pyramidal cells of layers II and III. We observed a Clz-evoked increase in population spike (PS), which was mediated by serotonin 1A receptor (5-HT(1A)-R), phospholipase Cß, and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). Immunoblotting demonstrated that the Clz-activation of CaMKII was 5-HT(1A)-R-mediated. Intriguingly, the NMDA receptor (NMDA-R) antagonist (±)2-amino-5-phosphonovaleric acid (APV) eliminated the Clz-mediated increase in PS, suggesting that the 5-HT(1A)-R, NMDA-R and CaMKII form a synergistic triad, which boosts excitatory post-synaptic potential (EPSP), thereby enhancing PS. In corroboration, Clz as well as NMDA augmented field EPSP (fEPSP), and WAY100635 (a 5-HT(1A)-R antagonist), APV, and a CaMKII inhibitor eliminated this increase. As previously shown, CaMKII binds to the NMDA-R 2B (NR2B) subunit to become constitutively active, thereby inducing α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor recruitment to the post-synaptic membrane and an increase in fEPSP. Co-immunoprecipitation demonstrated that Clz potentiates interactions among CaMKII, NR2B, and 5-HT(1A)-R, possibly in the membrane rafts of the post-synaptic density (PSD), because pretreatment with methyl-ß-cyclodextrin (MCD), an agent that disrupts rafts, inhibited both co-immunoprecipitation as well as fEPSP. In summary, Clz functions in the PFC by orchestrating a synergism among 5-HT(1A)-R, CaMKII, and NMDA-R, which augments excitability in the PFC neurons of layers II/III.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Clozapine/pharmacology , Neurons/drug effects , Prefrontal Cortex/cytology , Receptor, Serotonin, 5-HT1A/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Serotonin Agents/pharmacology , Action Potentials/drug effects , Animals , Animals, Newborn , Dose-Response Relationship, Drug , Drug Interactions , Electric Stimulation , Enzyme Inhibitors/pharmacology , Excitatory Amino Acid Agents/pharmacology , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Immunoprecipitation , In Vitro Techniques , Male , Mice , Prefrontal Cortex/metabolism , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...