Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Sci Food Agric ; 101(10): 4256-4265, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-33421116

ABSTRACT

BACKGROUND: In recent years the use of high-pressure processing (HPP) of fruit products has steadily increased due to its antimicrobial effectiveness and the retention of nutritional and quality attributes compared to conventional thermal technologies. Edible coatings are already being used to enhance the quality of minimally processed fruits. Thus, apple cubes (AC) and alginate-vanillin-coated apple cubes (AVAC) were subjected to HPP (400 MPa/5 min/35 °C). The microbiological and physicochemical parameters were evaluated and the bioactive compounds were monitored before and after HPP of apple cubes. Also, an in vitro gastrointestinal digestion (GID) was conducted. RESULTS: HPP left L. monocytogenes counts below the detection limit (2 log UFC g-1 ), regardless of the presence of coating. For E. coli, HPP + active coating showed a synergism affording the greatest reduction (>5 log) for AVAC-HPP. Firmness was maintained in AVAC-HPP samples, while AC-HPP samples suffered reductions of 35%. Colour attributes were also better retained in AVAC-HPP samples. In general, HPP led to a decrease in phenolic compounds. Regarding the effects of GID, vanillin-based active coating exerted a protective effect on some phenolics. Thus, p-coumaroylquinic acid concentration was maintained for AVAC and AVAC-HPP during GID. Epigallocatechin, the compound with the highest concentration in apple cubes, increased for AVAC (106%) and AVAC-HPP (57%). Also, phloridzin concentration increased for AVAC-HPP (17%). At the end of GID, procyanidin B1 and epigallocatechin were the main phenolic compounds for all samples, AVAC showing the highest concentration. CONCLUSIONS: This work demonstrates that the combined application of HPP and active coatings on apple cubes could be used to obtain a safe and good-quality product. © 2021 Society of Chemical Industry.


Subject(s)
Food Preservation/methods , Food Preservatives/pharmacology , Fruit/microbiology , Malus/chemistry , Phenols/chemistry , Escherichia coli/drug effects , Escherichia coli/growth & development , Food Preservation/instrumentation , Fruit/chemistry , Malus/microbiology , Nutritive Value
2.
J Sci Food Agric ; 100(15): 5518-5526, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32567052

ABSTRACT

BACKGROUND: Adding value to conventional fruit juices by including prebiotic compounds into their formulation and preserving them using non-thermal, eco-friendly and safe technologies represent interesting and strategic approaches to diversify healthy and innovative food products. In this context, the effect of ultrasound-assisted processing (for 15 and 30 min, 40 kHz, 180 W) on microbiological, physicochemical, nutritional and sensory quality of prebiotic-rich strawberry juices was investigated during storage (14 days, 5 °C). RESULTS: Compared to untreated samples, the applied preservation treatments enhanced the microbiological and nutritional quality of samples by significantly reducing native microflora counts (reductions up to 1 log CFU mL-1 at day 14) and increasing the total phenolic content (by more than 25% in comparison to controls at day 14) leading to higher antioxidant capacity of prebiotic-rich strawberry juices. Ultrasound processing and prebiotic enrichment had no negative effect on sensory attributes of enriched samples, suggesting that this non-thermal technique successfully retained the fresh-like attributes of strawberry juices during their shelf-life, contributing to the good sensory stability of juices. In addition, ultrasound treatments had no detrimental impact on physicochemical quality and ascorbic acid content of enriched samples, showing similar stability to control samples during storage. CONCLUSIONS: Based on our results, ultrasound processing appears to be a promising non-thermal technique for ensuring a stable product from both microbiological and sensory points of view with improved antioxidant capacity and unaltered physicochemical quality while offering a healthier, nutritive and valuable food alternative. © 2020 Society of Chemical Industry.


Subject(s)
Food Preservation/methods , Fragaria/chemistry , Fruit and Vegetable Juices/analysis , Fruit/radiation effects , Prebiotics/analysis , Ultrasonics/methods , Antioxidants/analysis , Ascorbic Acid/analysis , Food Storage , Fragaria/radiation effects , Fruit/chemistry , Phenols/analysis
3.
J Food Sci ; 83(3): 631-638, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29210453

ABSTRACT

In this work, a Fourier transform mid-infrared spectroscopy (FTIR)-based method was developed for simultaneously quantifying simple sugars and exogenously added fructooligosaccharides (FOS) in strawberry juices preserved for up to 14 d using nonthermal techniques (geraniol and vanillin+ultrasound). The main spectral differences were observed in the 1200 to 900 cm-1 region. The presence of FOS was identified by the typical bands at 1134, 1034, and 935 cm-1 . During storage, a significant decrease of sucrose was concomitant to an increase of glucose and fructose in juices stored without any previous preservation treatment, as determined by high-performance liquid chromatography (HPLC). A principal component analysis was performed on the FTIR spectra corresponding to the different treatments. The groups observed explained more than 94% of the variance and were related to changes in the carbohydrate composition during storage. Then, different partial least square models (PLS) were defined to determine the concentrations of glucose, sucrose, fructose, and those of exogenously added FOS with degrees of polymerization within 3 and 5. The carbohydrates' concentrations determined by HPLC were used as reference method. The models were validated with independent sets of data. The mean of predicted values fitted nicely those obtained by HPLC (correlation and R2  > 0.97), thus supporting the use of the PLS models to monitor the quality of strawberry juices in unknown samples. In conclusion, FTIR spectroscopy appears as an adequate analytical tool to quick assess whether juice formulations meet specifications in terms of authenticity, contamination and/or deterioration. PRACTICAL APPLICATION: FTIR spectroscopy provided a method potentially transferable to the food industry when associated with the multivariate analysis. The robust 21 PLS models defined in this work provided reliable tools for the rapid monitoring of juices' authenticity and/or deterioration. In this regard, FTIR associated to multivariate analysis enabled the determination of different sugars in a single measurement without the need of pure sugars as standards. This experimental simplicity supports the use of FTIR at the production line, and also contributes to save time in determining carbohydrates' composition and stability, in an environmentally friendly way.


Subject(s)
Fragaria/chemistry , Fructans/chemistry , Fruit and Vegetable Juices/analysis , Spectroscopy, Fourier Transform Infrared/methods , Sugars/chemistry , Carbohydrates/chemistry , Chromatography, High Pressure Liquid , Least-Squares Analysis , Multivariate Analysis , Principal Component Analysis
4.
Biotechnol Appl Biochem ; 63(3): 407-18, 2016 May.
Article in English | MEDLINE | ID: mdl-25817426

ABSTRACT

The optimization of lipase and esterase production (LP and EP) and bacterial growth (BG) of a Stenotrophomonas sp. strain was developed. For this purpose, the effect of five different medium components and three physicochemical parameters were evaluated using a Plackett-Burman statistical design. Among eight variables, stirring speed, pH, and peptone concentration were found to be the most effective factors on the three responses under evaluation. An optimization study applying Box-Behnken response surface methodology was used to study the interactive effects of the three selected variables on LP/EP and microorganism growth. Predicted models were found to be significant with high regression coefficients (90%-99%). By using the desirability function approach, the optimum condition applying simultaneous optimization of the three responses under study resulted to be: stirring speed of 100 rpm, pH of 7.5, and a peptone concentration of 10 g/L, with a desirability value of 0.977. Under these optimal conditions, it is possible to achieve in the optimized medium a 15-fold increase in esterase productivity, a 117-fold increase in lipase production, and a 9-log CFU/mL increase in BG, compared with the basal medium without agitation.


Subject(s)
Biotechnology/methods , Chemical Phenomena , Esterases/biosynthesis , Lipase/biosynthesis , Lipolysis , Stenotrophomonas/growth & development , Stenotrophomonas/metabolism , Biomass , Culture Media/chemistry , Esterases/metabolism , Lipase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...