Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann ICRP ; 49(1_suppl): 143-153, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32777956

ABSTRACT

Whereas scientific evidence is the basis for recommendations and guidance on radiological protection, professional ethics is critically important and should always guide professional behaviour. The International Commission on Radiological Protection (ICRP) established Task Group 109 to advise medical professionals, patients, families, carers, the public, and authorities about the ethical aspects of radiological protection of patients in the diagnostic and therapeutic use of radiation in medicine. Occupational exposures and research-related exposures are not within the scope of this task group. Task Group 109 will produce a report that will be available to the different interested parties for consultation before publication. Presently, the report is at the stage of a working document that has benefitted from an international workshop organised on the topic by the World Health Organization. It presents the history of ethics in medicine in ICRP, and explains why this subject is important, and the benefits it can bring to the standard biomedical ethics. As risk is an essential part in decision-making and communication, a summary is included on what is known about the dose-effect relationship, with emphasis on the associated uncertainties. Once this theoretical framework has been presented, the report becomes resolutely more practical. First, it proposes an evaluation method to analyse specific situations from an ethical point of view. This method allows stakeholders to review a set of six ethical values and provides hints on how they could be balanced. Next, various situations (e.g. pregnancy, elderly, paediatric, end of life) are considered in two steps: first within a realistic, ethically challenging scenario on which the evaluation method is applied; and second within a more general context. Scenarios are presented and discussed with attention to specific patient circumstances, and on how and which reflections on ethical values can be of help in the decision-making process. Finally, two important related aspects are considered: how should we communicate with patients, family, and other stakeholders; and how should we incorporate ethics into the education and training of medical professionals?


Subject(s)
Guidelines as Topic , Nuclear Medicine/ethics , Radiation Exposure/prevention & control , Radiation Protection/standards , Humans , International Agencies
2.
Int J Radiat Biol ; 80(8): 593-605, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15370971

ABSTRACT

PURPOSE: To investigate the effect of wortmannin and 3-aminobenzamide (3-AB) on telomerase activity and apoptosis in two human leukaemia cells. MATERIALS AND METHODS: MOLT-4 (p53-wild type) and KG1a (p53-null) cells were irradiated with gamma-rays (3 Gy at 1.57 Gy min(-1)) and the effects of wortmannin and 3-AB were evaluated. Telomerase activity was measured by polymerase chain reaction and the expression of human telomerase reverse transcriptase, human telomerase RNA and telomerase-associated protein 1 was assessed by reverse transcriptase-polymerase chain reaction. Apoptosis was evaluated by fluorescence microscopy and flow cytometry. RESULTS: A radiation-induced up-regulation of telomerase activity was observed from 4 h post-irradiation in both cell lines. This up-regulation was abrogated by wortmannin and 3-AB. Telomerase activity was maximal 24 h post-irradiation, coinciding with an accumulation of human telomerase reverse transcriptase mRNA. Apoptosis and G2/M arrest were evident from 4 h post-irradiation in MOLT-4 cells. KG1a cells exhibited a G2/M block at 24 h post-irradiation and apoptosis increased between 24 and 48 h post-irradiation. 3-AB abolished G2/M blockage and enhanced radiation-induced apoptosis in both cell lines, while wortmannin increased apoptosis only in MOLT-4 cells. CONCLUSIONS: 3-AB inhibits the radiation-associated telomerase activity increase and enhances apoptosis in MOLT-4 and KG1a cells. Wortmannin, which also inhibits the radiation-associated telomerase activity increase in both cell lines, does not modify radiation-induced apoptosis in KG1a cells. DNA repair enzymes might be selective targets for enhancing radiosensitivity in certain tumour cells.


Subject(s)
Androstadienes/pharmacology , Apoptosis/drug effects , Benzamides/pharmacology , DNA Repair/drug effects , Enzyme Inhibitors/pharmacology , Telomerase/antagonists & inhibitors , Cell Cycle/drug effects , Cell Cycle/radiation effects , Cell Line, Tumor , Humans , Phosphoinositide-3 Kinase Inhibitors , Poly(ADP-ribose) Polymerase Inhibitors , Wortmannin
SELECTION OF CITATIONS
SEARCH DETAIL
...