Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 22(20)2021 Oct 16.
Article in English | MEDLINE | ID: mdl-34681823

ABSTRACT

Influenza A viruses (IAVs) are respiratory pathogens that are able to hijack multiple cellular mechanisms to drive their replication. Consequently, several viral and cellular proteins undergo posttranslational modifications such as dynamic phosphorylation/dephosphorylation. In eukaryotic cells, dephosphorylation is mainly catalyzed by protein phosphatase 2A (PP2A). While the function of kinases in IAV infection is quite well studied, only little is known about the role of PP2A in IAV replication. Here, we show, by using knockdown and inhibition approaches of the catalytic subunit PP2Ac, that this phosphatase is important for efficient replication of several IAV subtypes. This could neither be attributed to alterations in the antiviral immune response nor to changes in transcription or translation of viral genes. Interestingly, decreased PP2Ac levels resulted in a significantly reduced cell viability after IAV infection. Comprehensive kinase activity profiling identified an enrichment of process networks related to apoptosis and indicated a synergistic action of hyper-activated PI3K/Akt, MAPK/JAK-STAT and NF-kB signaling pathways, collectively resulting in increased cell death. Taken together, while IAV seems to effectively tap leftover PP2A activity to ensure efficient viral replication, reduced PP2Ac levels fail to orchestrate cell survival mechanisms to protect infected cells from early cell death.


Subject(s)
Apoptosis , Cell Survival , Influenza A virus/physiology , Influenza, Human/immunology , Influenza, Human/virology , Orthomyxoviridae Infections/virology , Protein Phosphatase 2/physiology , A549 Cells , Animals , Cell Line , Dogs , Gene Knockdown Techniques , Host Microbial Interactions , Humans , Madin Darby Canine Kidney Cells , Phosphorylation , Signal Transduction , Virus Replication
2.
J Virol ; 95(20): e0067221, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34319782

ABSTRACT

Influenza A virus (IAV) is the causative agent of flu disease that results in annual epidemics and occasional pandemics. IAV alters several signaling pathways of the cellular host response in order to promote its replication. Therefore, some of these pathways can serve as targets for novel antiviral agents. Here, we show that c-Jun NH2-terminal kinase (JNK)-interacting protein 4 (JIP4) is dynamically phosphorylated in IAV infection. The lack of JIP4 resulted in higher virus titers, with significant differences in viral protein and mRNA accumulation as early as within the first replication cycle. In accordance, decreased IAV titers and protein accumulation were observed during the overexpression of JIP4. Strikingly, the antiviral function of JIP4 does not originate from modulation of JNK or p38 mitogen-activated protein kinase (MAPK) pathways or from altered expression of interferons or interferon-stimulated genes but rather originates from a direct reduction of viral polymerase activity. Furthermore, the interference of JIP4 with IAV replication seems to be linked to the phosphorylation of the serine at position 730 that is sufficient to impede the viral polymerase. Collectively, we provide evidence that JIP4, a host protein modulated in IAV infection, exhibits antiviral properties that are dynamically controlled by its phosphorylation at S730. IMPORTANCE Influenza A virus (IAV) infection is a world health concern, and current treatment options encounter high rates of resistance. Our group investigates host pathways modified in IAV infection as promising new targets. The host protein JIP4 is dynamically phosphorylated in IAV infection. JIP4 absence resulted in higher virus titers and viral protein and mRNA accumulation within the first replication cycle. Accordingly, decreased IAV titers and protein accumulation were observed during JIP4 overexpression. Strikingly, the antiviral function of JIP4 does not originate from modulation of JNK or p38 MAPK pathways or from altered expression of interferons or interferon-stimulated genes but rather originates from a reduction in viral polymerase activity. The interference of JIP4 with IAV replication is linked to the phosphorylation of serine 730. We provide evidence that JIP4, a host protein modulated in IAV infection, exhibits antiviral properties that are dynamically controlled by its phosphorylation at S730.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Influenza A virus/metabolism , A549 Cells , Animals , Chlorocebus aethiops , Dogs , Host-Pathogen Interactions/genetics , Humans , Immune Evasion/genetics , Immunity, Innate/genetics , Influenza A virus/physiology , Influenza, Human/virology , Interferons/genetics , Madin Darby Canine Kidney Cells , Phosphorylation , Signal Transduction/genetics , Vero Cells , Virus Replication/genetics , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
3.
Virulence ; 12(1): 244-259, 2021 12.
Article in English | MEDLINE | ID: mdl-33410731

ABSTRACT

St. Louis encephalitis virus (SLEV) is a neglected mosquito-borne flavivirus that causes severe neurological disease in humans. SLEV replication in the central nervous system (CNS) induces the local production of interferons (IFNs), which are attributed to host protection. The antiviral response to SLEV infection in the CNS is not completely understood, which led us to characterize the roles of IFNs using mouse models of St. Louis encephalitis. We infected mice deficient in type I IFN receptor (ABR-/-) or deficient in Type II IFN (IFNγ-/-) and assessed the contribution of each pathway to disease development. We found that type I and II IFNs play different roles in SLEV infection. Deficiency in type I IFN signaling was associated to an early and increased mortality, uncontrolled SLEV replication and impaired ISG expression, leading to increased proinflammatory cytokine production and brain pathology. Conversely, IFNγ-/- mice were moderately resistant to SLEV infection. IFNγ deficiency caused no changes to viral load or SLEV-induced encephalitis and did not change the expression of ISGs in the brain. We found that type I IFN is essential for the control of SLEV replication whereas type II IFN was not associated with protection in this model.


Subject(s)
Brain/immunology , Brain/virology , Encephalitis Virus, St. Louis/immunology , Encephalitis, St. Louis/immunology , Interferon Type I/immunology , Interferon-gamma/immunology , Animals , Brain/pathology , Disease Models, Animal , Interferon Type I/genetics , Interferon-gamma/genetics , Mice , Mice, Inbred C57BL , Viral Load , Virus Replication/immunology
4.
Pharmacol Res ; 163: 105292, 2021 01.
Article in English | MEDLINE | ID: mdl-33171305

ABSTRACT

Resolution failure of exacerbated inflammation triggered by Influenza A virus (IAV) prevents return of pulmonary homeostasis and survival, especially when associated with secondary pneumococcal infection. Therapeutic strategies based on pro-resolving molecules have great potential against acute inflammatory diseases. Angiotensin-(1-7) [Ang-(1-7)] is a pro-resolving mediator that acts on its Mas receptor (MasR) to promote resolution of inflammation. We investigated the effects of Ang-(1-7) and the role of MasR in the context of primary IAV infection and secondary pneumococcal infection and evaluated pulmonary inflammation, virus titers and bacteria counts, and pulmonary damage. Therapeutic treatment with Ang-(1-7) decreased neutrophil recruitment, lung injury, viral load and morbidity after a primary IAV infection. Ang-(1-7) induced apoptosis of neutrophils and efferocytosis of these cells by alveolar macrophages, but had no direct effect on IAV replication in vitro. MasR-deficient (MasR-/-) mice were highly susceptible to IAV infection, displaying uncontrolled inflammation, increased viral load and greater lethality rate, as compared to WT animals. Ang-(1-7) was not protective in MasR-/- mice. Interestingly, Ang-(1-7) given during a sublethal dose of IAV infection greatly reduced morbidity associated with a subsequent S. pneumoniae infection, as seen by decrease in the magnitude of neutrophil influx, number of bacteria in the blood leading to a lower lethality. Altogether, these results show that Ang-(1-7) is highly protective against severe primary IAV infection and protects against secondary bacterial infection of the lung. These effects are MasR-dependent. Mediators of resolution of inflammation, such as Ang-(1-7), should be considered for the treatment of pulmonary viral infections.


Subject(s)
Angiotensin I/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Peptide Fragments/therapeutic use , Pneumococcal Infections/drug therapy , Pneumonia, Viral/drug therapy , Proto-Oncogene Proteins/immunology , Receptors, G-Protein-Coupled/immunology , A549 Cells , Angiotensin I/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Cytokines/immunology , Dogs , Humans , Influenza A virus , Lung/drug effects , Lung/immunology , Lung/pathology , Madin Darby Canine Kidney Cells , Male , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/drug effects , Neutrophils/immunology , Peptide Fragments/pharmacology , Peroxidase/immunology , Phagocytosis/drug effects , Pneumococcal Infections/immunology , Pneumococcal Infections/pathology , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Proto-Oncogene Mas , Proto-Oncogene Proteins/genetics , Receptors, G-Protein-Coupled/genetics , Streptococcus pneumoniae
5.
Molecules ; 25(20)2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33096707

ABSTRACT

Influenza virus infections represent a major public health issue by causing annual epidemics and occasional pandemics that affect thousands of people worldwide. Vaccination is the main prophylaxis to prevent these epidemics/pandemics, although the effectiveness of licensed vaccines is rather limited due to the constant mutations of influenza virus antigenic characteristics. The available anti-influenza drugs are still restricted and there is an increasing viral resistance to these compounds, thus highlighting the need for research and development of new antiviral drugs. In this work, two semisynthetic derivatives of digitoxigenin, namely C10 (3ß-((N-(2-hydroxyethyl)aminoacetyl)amino-3-deoxydigitoxigenin) and C11 (3ß-(hydroxyacetyl)amino-3-deoxydigitoxigenin), showed anti-influenza A virus activity by affecting the expression of viral proteins at the early and late stages of replication cycle, and altering the transcription and synthesis of new viral proteins, thereby inhibiting the formation of new virions. Such antiviral action occurred due to the interference in the assembly of viral polymerase, resulting in an impaired polymerase activity and, therefore, reducing viral replication. Confirming the in vitro results, a clinically relevant ex vivo model of influenza virus infection of human tumor-free lung tissues corroborated the potential of these compounds, especially C10, to completely abrogate influenza A virus replication at the highest concentration tested (2.0 µM). Taken together, these promising results demonstrated that C10 and C11 can be considered as potential new anti-influenza drug candidates.


Subject(s)
Antiviral Agents/pharmacology , Cardenolides/pharmacology , Influenza A virus/drug effects , Influenza, Human/drug therapy , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Antiviral Agents/chemistry , Cardenolides/chemistry , Humans , Molecular Conformation , RNA-Dependent RNA Polymerase/metabolism , Virus Replication/drug effects
6.
Antiviral Res ; 180: 104855, 2020 08.
Article in English | MEDLINE | ID: mdl-32574688

ABSTRACT

Zika virus (ZIKV) has gained a lot of attention in the past few years due to its rapid spread worldwide and its close association to severe neurological outcomes, such as microcephaly and Guillain-Barre syndrome. In this study, the in vitro and in vivo anti-ZIKV activity of 7-deaza-7-fluoro-2'-C-methyl-adenosine (DFMA) was evaluated. In vitro, using primary mouse neuronal cells and human neural stem cells infected by ZIKV, treatment with DFMA resulted in impaired viral replication and protection against virus-induced cell death. In vivo, when administrated prior to infection, DFMA prevented lethality and markedly reduced viral loads and neuroinflammation, including microgliosis and overall brain damage. Additionally, as an early therapeutic treatment, DFMA increased survival rates in mice. Collectively, these findings demonstrate that the nucleoside analog DFMA inhibits ZIKV infection and viral-induced neuroinflammation in vitro and in vivo without apparent untoward effects, suggesting it may be useful in individuals infected with ZIKV.


Subject(s)
Adenosine/analogs & derivatives , Antiviral Agents/pharmacology , Inflammation/virology , Nervous System Diseases/virology , Zika Virus Infection/complications , Adenosine/pharmacology , Adenosine/therapeutic use , Animals , Antiviral Agents/therapeutic use , Cell Line , Cells, Cultured , Chlorocebus aethiops , Culicidae/cytology , Humans , Inflammation/drug therapy , Mice , Nervous System Diseases/drug therapy , Neural Stem Cells , Vero Cells , Viral Load/drug effects , Virus Replication/drug effects , Zika Virus , Zika Virus Infection/drug therapy
7.
Sci Rep ; 8(1): 16034, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30375482

ABSTRACT

In Africa, Old World Primates are involved in the maintenance of sylvatic circulation of ZIKV. However, in Brazil, the hosts for the sylvatic cycle remain unknown. We hypothesized that free-living NHPs might play a role in urban/periurban ZIKV dynamics, thus we undertook an NHP ZIKV investigation in two cities in Brazil. We identified ZIKV-positive NHPs and sequences obtained were phylogenetically related to the American lineage of ZIKV. Additionally, we inoculated four C. penicillata with ZIKV and our results demonstrated that marmosets had a sustained viremia. The natural and experimental infection of NHPs with ZIKV, support the hypothesis that NHPs may be a vertebrate host in the maintainance of ZIKV transmission/circulation in urban tropical settings. Further studies are needed to understand the role they may play in maintaining the urban cycle of the ZIKV and how they may be a conduit in establishing an enzootic transmission cycle in tropical Latin America.


Subject(s)
Disease Reservoirs/virology , Primates/virology , Zika Virus Infection/virology , Zika Virus/pathogenicity , Aedes/virology , Africa , Animals , Brazil , Humans , Phylogeny , Viremia , Zika Virus Infection/transmission
8.
Biol Chem ; 399(3): 203-217, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29145171

ABSTRACT

In the 20th century, socioeconomic and environmental changes facilitated the reintroduction of mosquitoes in developing cities, resulting in the reinsertion of mosquito-borne viral diseases and the dispersal of their causative agents on a worldwide scale. Recurrent outbreaks of arboviral diseases are being reported, even in regions without a previous history of arboviral disease transmission. Of note, arboviral infections represented approximately 30% of all emerging vector-borne diseases in the last decade. Therapeutic strategies against infectious viral diseases include the use of different classes of molecules that act directly on the pathogen and/or act by optimizing the host immune response. Drugs targeting the virus usually provide amelioration of symptoms by suppressing and controlling the infection. However, it is limited by the short-window of effectiveness, ineffectiveness against latent viruses, development of drug-resistant mutants and toxic side effects. Disease may also be a consequence of an excessive, uncontrolled or misplaced inflammatory response, treatments that interfere in host immune response are interesting options and can be used isolated or in combination with virus-targeted therapies. The use of host-targeted therapies requires specific knowledge regarding host immune patterns that may trigger dengue virus (DENV), chikungunya virus (CHIKV) or Zika virus (ZIKV) disease.


Subject(s)
Antiviral Agents/pharmacology , Arbovirus Infections/drug therapy , Arbovirus Infections/virology , Arboviruses/drug effects , Arboviruses/immunology , Animals , Arbovirus Infections/immunology , Humans
9.
mBio ; 8(2)2017 04 25.
Article in English | MEDLINE | ID: mdl-28442607

ABSTRACT

Zika virus (ZIKV) infection is a global health emergency that causes significant neurodegeneration. Neurodegenerative processes may be exacerbated by N-methyl-d-aspartate receptor (NMDAR)-dependent neuronal excitoxicity. Here, we have exploited the hypothesis that ZIKV-induced neurodegeneration can be rescued by blocking NMDA overstimulation with memantine. Our results show that ZIKV actively replicates in primary neurons and that virus replication is directly associated with massive neuronal cell death. Interestingly, treatment with memantine or other NMDAR blockers, including dizocilpine (MK-801), agmatine sulfate, or ifenprodil, prevents neuronal death without interfering with the ability of ZIKV to replicate in these cells. Moreover, in vivo experiments demonstrate that therapeutic memantine treatment prevents the increase of intraocular pressure (IOP) induced by infection and massively reduces neurodegeneration and microgliosis in the brain of infected mice. Our results indicate that the blockade of NMDARs by memantine provides potent neuroprotective effects against ZIKV-induced neuronal damage, suggesting it could be a viable treatment for patients at risk for ZIKV infection-induced neurodegeneration.IMPORTANCE Zika virus (ZIKV) infection is a global health emergency associated with serious neurological complications, including microcephaly and Guillain-Barré syndrome. Infection of experimental animals with ZIKV causes significant neuronal damage and microgliosis. Treatment with drugs that block NMDARs prevented neuronal damage both in vitro and in vivo These results suggest that overactivation of NMDARs contributes significantly to the neuronal damage induced by ZIKV infection, and this is amenable to inhibition by drug treatment.


Subject(s)
Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/pathology , Neuroprotective Agents/administration & dosage , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Zika Virus Infection/complications , Zika Virus Infection/pathology , Zika Virus/growth & development , Animals , Disease Models, Animal , Mice , Treatment Outcome
10.
J Neuroinflammation ; 14(1): 61, 2017 03 22.
Article in English | MEDLINE | ID: mdl-28330482

ABSTRACT

BACKGROUND: Flaviviruses are a genre of closely related viral pathogens which emerged in the last decades in Brazil and in the world. Saint (St.) Louis encephalitis virus (SLEV) is a neglected flavivirus that can cause a severe neurological disease that may lead to death or sequelae. St. Louis encephalitis pathogenesis is poorly understood, which hinders the development of specific treatment or vaccine. METHODS: To address this problem, we developed a model of SLEV infection in mice to study mechanisms involved in the pathogenesis of severe disease. The model consists in the intracranial inoculation of the SLEV strain BeH 355964, a strain isolated from a symptomatic human patient in Brazil, in adult immunocompetent mice. RESULTS: Inoculated mice presented SLEV replication in the brain, accompanied by tissue damage, disease signs, and mortality approximately 7 days post infection. Infection was characterized by the production of proinflammatory cytokines and interferons and by leukocyte recruitment to the brain, composed mainly by neutrophils and lymphocytes. In vitro experiments indicated that SLEV is able to replicate in both neurons and glia and caused neuronal death and cytokine production, respectively. CONCLUSIONS: Altogether, intracranial SLEV infection leads to meningoencephalitis in mice, recapitulating several aspects of St. Louis encephalitis in humans. Our study indicates that the central nervous system (CNS) inflammation is a major component of SLEV-induced disease. This model may be useful to identify mechanisms of disease pathogenesis or resistance to SLEV infection.


Subject(s)
Cytokines/metabolism , Disease Models, Animal , Encephalitis Virus, St. Louis/physiology , Encephalitis, St. Louis/pathology , Analysis of Variance , Animals , Cell Line, Transformed , Encephalitis, St. Louis/virology , Eosinophil Peroxidase/metabolism , Hexosaminidases/metabolism , Leukocytes/metabolism , Leukocytes/virology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Peroxidase/metabolism , Time Factors , Viral Load
11.
Immunology ; 145(4): 583-96, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25939314

ABSTRACT

Dengue is a mosquito-borne disease that affects millions of people worldwide yearly. Currently, there is no vaccine or specific treatment available. Further investigation on dengue pathogenesis is required to better understand the disease and to identify potential therapeutic targets. The chemokine system has been implicated in dengue pathogenesis, although the specific role of chemokines and their receptors remains elusive. Here we describe the role of the CC-chemokine receptor CCR5 in Dengue virus (DENV-2) infection. In vitro experiments showed that CCR5 is a host factor required for DENV-2 replication in human and mouse macrophages. DENV-2 infection induces the expression of CCR5 ligands. Incubation with an antagonist prevents CCR5 activation and reduces DENV-2 positive-stranded (+) RNA inside macrophages. Using an immunocompetent mouse model of DENV-2 infection we found that CCR5(-/-) mice were resistant to lethal infection, presenting at least 100-fold reduction of viral load in target organs and significant reduction in disease severity. This phenotype was reproduced in wild-type mice treated with CCR5-blocking compounds. Therefore, CCR5 is a host factor required for DENV-2 replication and disease development. Targeting CCR5 might represent a therapeutic strategy for dengue fever. These data bring new insights on the association between viral infections and the chemokine receptor CCR5.


Subject(s)
Dengue Virus/physiology , Dengue/immunology , Macrophages/immunology , Receptors, CCR5/immunology , Virus Replication/immunology , Animals , Base Sequence , Dengue/drug therapy , Dengue/genetics , Humans , Macrophages/pathology , Macrophages/virology , Mice , Mice, Knockout , Molecular Sequence Data , Receptors, CCR5/genetics , Virus Replication/drug effects , Virus Replication/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...