Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ Comput Sci ; 9: e1510, 2023.
Article in English | MEDLINE | ID: mdl-37705655

ABSTRACT

A fuel cell, an energy conversion system, needs analysis for its performance at the design and off-design point conditions during its real-time operation. System performance evaluation with logical methodology is helpful in decision-making while considering efficiency and cross-correlated parameters in fuel cells. This work presents an overview and categorization of different fuel cells, leading to the developing of a method combining graph theory and matrix method for analyzing fuel cell system structure to make more informed decisions. The fuel cell system is divided into four interdependent sub-systems. The methodology developed in this work consists of a series of steps comprised of digraph representation, matrix representation, and permanent function representation. A mathematical model is evaluated quantitatively to produce a performance index numerical value. With the aid of case studies, the proposed methodology is explained, and the advantages of the proposed method are corroborated.

2.
Sensors (Basel) ; 17(5)2017 Apr 26.
Article in English | MEDLINE | ID: mdl-28445398

ABSTRACT

Nowadays many studies are being conducted to develop solutions for improving the performance of urban traffic networks. One of the main challenges is the necessary cooperation among different entities such as vehicles or infrastructure systems and how to exploit the information available through networks of sensors deployed as infrastructures for smart cities. In this work an algorithm for cooperative control of urban subsystems is proposed to provide a solution for mobility problems in cities. The interconnected traffic lights controller (TLC) network adapts traffic lights cycles, based on traffic and air pollution sensory information, in order to improve the performance of urban traffic networks. The presence of air pollution in cities is not only caused by road traffic but there are other pollution sources that contribute to increase or decrease the pollution level. Due to the distributed and heterogeneous nature of the different components involved, a system of systems engineering approach is applied to design a consensus-based control algorithm. The designed control strategy contains a consensus-based component that uses the information shared in the network for reaching a consensus in the state of TLC network components. Discrete event systems specification is applied for modelling and simulation. The proposed solution is assessed by simulation studies with very promising results to deal with simultaneous responses to both pollution levels and traffic flows in urban traffic networks.

3.
Sensors (Basel) ; 15(9): 24125-42, 2015 Sep 18.
Article in English | MEDLINE | ID: mdl-26393612

ABSTRACT

The solutions to cope with new challenges that societies have to face nowadays involve providing smarter daily systems. To achieve this, technology has to evolve and leverage physical systems automatic interactions, with less human intervention. Technological paradigms like Internet of Things (IoT) and Cyber-Physical Systems (CPS) are providing reference models, architectures, approaches and tools that are to support cross-domain solutions. Thus, CPS based solutions will be applied in different application domains like e-Health, Smart Grid, Smart Transportation and so on, to assure the expected response from a complex system that relies on the smooth interaction and cooperation of diverse networked physical systems. The Wireless Sensors Networks (WSN) are a well-known wireless technology that are part of large CPS. The WSN aims at monitoring a physical system, object, (e.g., the environmental condition of a cargo container), and relaying data to the targeted processing element. The WSN communication reliability, as well as a restrained energy consumption, are expected features in a WSN. This paper shows the results obtained in a real WSN deployment, based on SunSPOT nodes, which carries out a fuzzy based control strategy to improve energy consumption while keeping communication reliability and computational resources usage among boundaries.


Subject(s)
Computer Communication Networks/instrumentation , Fuzzy Logic , Wireless Technology/instrumentation , Software
4.
Sensors (Basel) ; 10(5): 4983-95, 2010.
Article in English | MEDLINE | ID: mdl-22399918

ABSTRACT

This paper presents a computational method for detecting vibrations related to eccentricity in ultra precision rotation devices used for nano-scale manufacturing. The vibration is indirectly measured via a frequency domain analysis of the signal from a piezoelectric sensor attached to the stationary component of the rotating device. The algorithm searches for particular harmonic sequences associated with the eccentricity of the device rotation axis. The detected sequence is quantified and serves as input to a regression model that estimates the eccentricity. A case study presents the application of the computational algorithm during precision manufacturing processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...