Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673761

ABSTRACT

Multiple sclerosis (MS) is an autoimmune, inflammatory, and neurodegenerative disease of the central nervous system for which there is no cure, making it necessary to search for new treatments. The endocannabinoid system (ECS) plays a very important neuromodulatory role in the CNS. In recent years, the formation of heteromers containing cannabinoid receptors and their up/downregulation in some neurodegenerative diseases have been demonstrated. Despite the beneficial effects shown by some phytocannabinoids in MS, the role of the ECS in its pathophysiology is unknown. The main objective of this work was to identify heteromers of cell surface proteins receptive to cannabinoids, namely GPR55, CB1 and CB2 receptors, in brain samples from control subjects and MS patients, as well as determining their cellular localization, using In Situ Proximity Ligation Assays and immunohistochemical techniques. For the first time, CB1R-GPR55 and CB2R-GPR55 heteromers are identified in the prefrontal cortex of the human brain, more in the grey than in the white matter. Remarkably, the number of CB1R-GPR55 and CB2R-GPR55 complexes was found to be increased in MS patient samples. The results obtained open a promising avenue of research on the use of these receptor complexes as potential therapeutic targets for the disease.


Subject(s)
Multiple Sclerosis , Prefrontal Cortex , Receptor, Cannabinoid, CB1 , Receptor, Cannabinoid, CB2 , Receptors, Cannabinoid , Humans , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Prefrontal Cortex/metabolism , Receptors, Cannabinoid/metabolism , Receptor, Cannabinoid, CB2/metabolism , Receptor, Cannabinoid, CB1/metabolism , Male , Adult , Female , Receptors, G-Protein-Coupled/metabolism , Middle Aged , Up-Regulation , Protein Multimerization
2.
J Pharm Sci ; 113(4): 1038-1046, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37844760

ABSTRACT

In order to reduce the side effects of traditional chemotherapy in the treatment of colorectal cancer (CRC), a new drug delivery system has been developed in this work, based on exosomes that can host two drugs that act synergistically: farnesol (that stops the cell cycle) and paclitaxel (prevents microtubule system depolymerization). Firstly, exosomes were isolated from different cell cultures (from colorectal cancer and from fibroblast as example of normal cell line) by different methods and characterized by western blot, TEM and DLS, and results showed that they express classical protein markers such as CD9 and HSP-70 and they showed spherical morphology with sizes from 93 nm to 129 nm depending on the source. These exosomes were loaded with both drugs and its effect was studied in vitro. The efficacy was studied by comparing the viability of cell cultures with a colorectal cancer cell line (HCT-116) and a normal cell line (fibroblast HS-5). Results showed that exosomes present a specific effect with more reduction in cell viability in tumour cultures than healthy ones. In summary, exosomes are presented in this work as a promising strategy for colorectal cancer treatment.


Subject(s)
Colorectal Neoplasms , Exosomes , Humans , Exosomes/metabolism , Paclitaxel/pharmacology , Drug Delivery Systems , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Metabolic Networks and Pathways , Cell Line, Tumor
3.
Int J Mol Sci ; 24(21)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37958618

ABSTRACT

Neuropsychiatric disorders (NDs) are a diverse group of pathologies, including schizophrenia or bipolar disorders, that directly affect the mental and physical health of those who suffer from them, with an incidence that is increasing worldwide. Most NDs result from a complex interaction of multiple genes and environmental factors such as stress or traumatic events, including the recent Coronavirus Disease (COVID-19) pandemic. In addition to diverse clinical presentations, these diseases are heterogeneous in their pathogenesis, brain regions affected, and clinical symptoms, making diagnosis difficult. Therefore, finding new biomarkers is essential for the detection, prognosis, response prediction, and development of new treatments for NDs. Among the most promising candidates is the apolipoprotein D (Apo D), a component of lipoproteins implicated in lipid metabolism. Evidence suggests an increase in Apo D expression in association with aging and in the presence of neuropathological processes. As a part of the cellular neuroprotective defense machinery against oxidative stress and inflammation, changes in Apo D levels have been demonstrated in neuropsychiatric conditions like schizophrenia (SZ) or bipolar disorders (BPD), not only in some brain areas but in corporal fluids, i.e., blood or serum of patients. What is not clear is whether variation in Apo D quantity could be used as an indicator to detect NDs and their progression. This review aims to provide an updated view of the clinical potential of Apo D as a possible biomarker for NDs.


Subject(s)
Aging , Apolipoproteins D , Mental Disorders , Oxidative Stress , Humans , Aging/metabolism , Apolipoproteins D/metabolism , Biomarkers/metabolism , Lipoproteins/metabolism , Mental Disorders/diagnosis
4.
Eur J Pharm Sci ; 191: 106618, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37866674

ABSTRACT

This work proposes the development of a thermosensitive local drug release system based on Polaxamer 407, also known as Pluronic® F-127 (PF-127), Gellan Gum (GG) and the inclusion complex Sulfobutylated-ß-cyclodextrin (CD) with Farnesol (FOH). Rheological properties of the hydrogels and their degradation were studied. According to the rheological results, a solution of 20% w/v of PF-127 forms a strong gel with a gelling temperature of about 25 °C (storage modulus of 15,000 Pa). The addition of the GG increased the storage modulus (optimal concentration of 0.5 % w/v) twofold without modifying the gelling temperature. Moreover, including 0.5% w/v of GG also increased 6 times the degradation time of the hydrogel. Regarding the inclusion complex, the addition of free CD decreased the viscosity and the gel strength since polymer chains were included in CD cavity without affecting the gelling temperature. Contrarily, the inclusion complex CD-FOH did not significantly modify any property of the formulation because the FOH was hosted in the CD. Furthermore, a mathematical model was developed to adjust the degradation time. This model highlights that the addition of the GG decreases the number of released chains from the polymeric network (which coincides with an increase in the storage modulus) and that the free CD reduces the degradation rate, protecting the polymeric chains. Finally, FOH release was quantified with a specific device, that was designed and printed for this type of system, observing a sustainable drug release (similar to FOH aqueous solubility, 8 µM) dependent on polymer degradation.


Subject(s)
Hydrogels , beta-Cyclodextrins , Farnesol , Drug Delivery Systems , Polysaccharides, Bacterial , Poloxamer
5.
Int J Biol Macromol ; 253(Pt 6): 127406, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37832612

ABSTRACT

This work proposes the use of supercritical CO2 to impregnate starch (potato and corn) aerogels with quercetin for a potential fungistatic application. Starch aerogels were successfully produced with supercritical drying, but different results were found depending on the amylose/amylopectin ratio. A higher amount of amylose increases aerogels' specific surface area (with a structure with nanofibrils and nodes) due to the linear and amorphous character of this polymer, whereas a higher amount of amylopectin decreases this property until values of only 25 m2·g-1, obtaining an aerogel with a rough surface. These results were explained with XRD, thermogravimetric, and rheological results (triple step with two temperature sweeps and a time sweep and steady state analysis) concerning hydrogel formation. In fact, retrogradation step plays a more important role in hydrogel formation for a starch source with a higher amount of amylopectin due to an increase in the different polymers' interactions. Supercritical impregnation of quercetin on the aerogels was successfully performed (a loading around 0.30 % with respect to the amount of polymer), and in vitro results indicated that the aerogels produced a fungistatic effect on different types of fungi, but only in the first 12 h because the microorganisms adapted to the surrounding environment. Finally, a compartmental model was used to fit the drug release, which is controlled by quercetin aqueous solubility, indicating the main mass transfer resistances (mass transfer through aerogels was always around 500 min-1 and dissolution process mass transfer from 5·10-3 to 1.65·10-3 s-1) and how an increase in the specific surface area of the aerogels (in the case of corn aerogel) provided a stronger initial burst (70-80 % in 20 min). In fact, this initial burst release was mathematically related to a parameter, that varies from 0.178 to 0.036 depending on the aerogel composition. This study shows that starch aerogels can be impregnated with a hydrophobic compound with fungistatic effect by using supercritical CO2, modifying in addition the drug release by changing the native starch.


Subject(s)
Drug Carriers , Starch , Starch/chemistry , Drug Carriers/chemistry , Amylose , Quercetin , Amylopectin , Epidemiological Models , Carbon Dioxide , Hydrogels
6.
Pharmaceutics ; 15(5)2023 May 17.
Article in English | MEDLINE | ID: mdl-37242756

ABSTRACT

At present, colorectal cancer (CRC) is the second deadliest type of cancer, partly because a high percentage of cases are diagnosed at advanced stages when tumors have already metastasized. Thus, there is an urgent need to develop novel diagnostic systems that allow early detection as well as new therapeutic systems that are more specific than those currently available. In this context, nanotechnology plays a very important role in the development of targeted platforms. In recent decades, many types of nanomaterials with advantageous properties have been used for nano-oncology applications and have been loaded with different types of targeted agents, capable of recognizing tumor cells or biomarkers. Indeed, among the different types of targeted agents, the most widely used are monoclonal antibodies, as the administration of many of them is already approved by the main drug regulatory agencies for the treatment of several types of cancer, including CRC. In this way, this review comprehensively discusses the main drawbacks of the conventional screening technologies and treatment for CRC, and it presents recent advances in the application of antibody-loaded nanoplatforms for CRC detection, therapy or theranostics applications.

7.
Eur J Pharm Sci ; 180: 106325, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36351487

ABSTRACT

A global release model is proposed to study the drug release from porous materials for pharmaceutical applications. This model is defined by implementing a compartmental model where the release profile could be explained as the combination of mass transfer phenomena through three compartments as well as a desorption process or dissolution process from the support. This model was validated with five different systems produced with supercritical CO2 (aerogels, membranes, and fibers), showing different release processes. Numerical results indicate that this compartmental approach can be useful to determine adsorption and desorption constants as well as mass transfer resistances within the material. Likewise, this model can predict lag phases and imbibition phenomena. Therefore, the development of compartmental models can be an alternative to traditional models to successfully predict the drug profile of porous materials, achieving a complete understanding of the involved phenomena regardless of the material characteristics.


Subject(s)
Epidemiological Models , Drug Liberation , Porosity , Adsorption
8.
Pharmaceutics ; 14(12)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36559257

ABSTRACT

The inhaled route is regarded as one of the most promising strategies as a treatment against pulmonary infections. However, the delivery of drugs in a dry powder form remains challenging. In this work, we have used alginate to form microparticles containing an antibiotic model (colistin sulfate). The alginate microparticles were generated by atomization technique, and they were characterized by antimicrobial in vitro studies against Pseudomonas aeruginosa. Optimization of different parameters allowed us to obtain microparticles as a dry powder with a mean size (Feret diameter) of 4.45 ± 1.40 µm and drug loading of 8.5 ± 1.50%. The process developed was able to concentrate most of the colistin deposits on the surface of the microparticles, which could be observed by SEM and a Dual-Beam microscope. This produces a fast in vitro release of the drug, with a 100% release achieved in 4 h. Physicochemical characterization using the FTIR, EDX and PXRD techniques revealed information about the change that occurs from the amorphous to a crystalline form of colistin. Finally, the cytotoxicity of microparticles was tested using lung cell lines (A549 and Calu-3). Results of the study showed that alginate microparticles were able to inhibit bacterial growth while displaying non-toxicity toward lung cells.

9.
Org Biomol Chem ; 20(40): 7972-7980, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36193721

ABSTRACT

The ability of a series of electron-deficient aromatic compounds to form charge-transfer complexes with tryptophan in water has been evaluated by X-ray diffraction studies, UV-vis spectra and NMR. As dinitrophenyl (DNP) ligands are well-known to generate antibody-mediated responses and the π-π stacking interactions with tryptophan residues of the antibody Fab fragment have been reported, most of the aromatic receptors studied here are nitro derivatives. Charge-transfer interactions between the rich indole ring of tryptophan and the electron-deficient aromatic receptors have been observed in the solid state, as four crystal structures of the complexes were obtained. The aromatic donor-acceptor interactions in solution were also verified by UV-vis and NMR spectroscopy. The association of the tripeptide Trp-Gly-Trp, a motif found in antigen Ag43, with the electron-deficient aromatic diimide was also studied by UV-vis and NMR spectroscopy. Our results show that these simple electron-deficient molecules could potentially behave as novel haptens and be incorporated in more elaborated drugs targeting protein-protein interactions, due to the synergistic effect of multiple non-covalent interactions.


Subject(s)
Electrons , Tryptophan , Tryptophan/chemistry , Water/chemistry , Haptens , Indoles/chemistry , Immunoglobulin Fab Fragments
10.
Carbohydr Polym ; 294: 119732, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35868800

ABSTRACT

Hydrogels loaded with chemotherapeutics are promising tools for local tumor treatment. In this work, redox-responsive implantable hydrogels based on gellan gum were prepared as paclitaxel carriers for HER2-positive breast cancer therapy. To achieve different degrees of chemical crosslinking, hydrogels were synthesized in both acetate buffer and phosphate buffer and crosslinked with different concentrations of l-cysteine. It was shown that both, the type of buffer and the l-cysteine concentration used, conditioned the dynamic modulus, equilibrium swelling rate, porosity, and thermal stability of the hydrogels. Then, the biocompatibility of the hydrogels with the most suitable porosity for drug delivery applications was assessed. Once confirmed, these hydrogels were loaded with paclitaxel:ß-cyclodextrin inclusion complexes, and they showed a glutathione-responsive controlled release of the taxane. Moreover, when tested in vitro, paclitaxel-loaded hydrogels exhibited great antitumor activity. Thus, they could act as excellent local tailored carriers of paclitaxel for future, post-surgical treatment of HER2-overexpressing breast tumors.


Subject(s)
Breast Neoplasms , Hydrogels , Breast Neoplasms/drug therapy , Cysteine , Female , Humans , Hydrogels/chemistry , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Polysaccharides, Bacterial/chemistry
11.
Molecules ; 27(9)2022 Apr 24.
Article in English | MEDLINE | ID: mdl-35566086

ABSTRACT

Isoprenoids are natural compounds essential for a great number of cellular functions. One of them is farnesol (FOH), which can reduce cell proliferation, but its low solubility in aqueous solvents limits its possible clinical use as a pharmacological tool. One alternative is the use of cyclodextrins (CDs) which house hydrophobic molecules forming inclusion complexes. To assess FOH potential application in anticancer treatments, Sulfobutylated ß-cyclodextrin Sodium Salt (SBE-ß-CD) was selected, due to it has high solubility, approbation by the FDA, and numerous studies that ensure its safety to be administered parenterally or orally without nephrotoxicity associated. The therapeutic action of farnesol and complex were studied in different carcinoma cells, compared with a normal cell line. Farnesol showed selectivity, affecting the viability of colon and liver cancer cells more than in breast cancer cells and fibroblasts. All cells suffered apoptosis after being treated with 150 µM of free FOH, but the complex reduced their cell viability between 50 and 75%. Similar results were obtained for both types of isomers, and the addition of phosphatidylcholine reverses this effect. Finally, cell cycle analysis corroborates the action of FOH as inducer of a G0/G1 phase; when the cells were treated using the complex form, this viability was reduced, reaching 50% in the case of colon and liver, 60% in fibroblasts, and only 75% in breast cancer.


Subject(s)
Breast Neoplasms , Cyclodextrins , Cell Membrane , Cell Proliferation , Cyclodextrins/chemistry , Farnesol/pharmacology , Female , Humans , Solubility
12.
Materials (Basel) ; 14(24)2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34947196

ABSTRACT

A new approach based on the atomization of non-Newtonian fluids has been proposed to produce microparticles for a potential inhalation route. In particular, different solutions of alginate were atomized on baths of different crosslinkers, piperazine and barium chloride, obtaining microparticles around 5 and 40 microns, respectively. These results were explained as a consequence of the different viscoelastic properties, since oscillatory analysis indicated that the formed hydrogel beads with barium chloride had a higher storage modulus (1000 Pa) than the piperazine ones (20 Pa). Pressure ratio (polymer solution-air) was identified as a key factor, and it should be from 0.85 to 1.00 to ensure a successful atomization, obtaining the smallest particle size at intermediate pressures. Finally, a numerical study based on dimensionless numbers was performed to predict particle size depending on the conditions. These results highlight that it is possible to control the microparticles size by modifying either the viscoelasticity of the hydrogel or the experimental conditions of atomization. Some experimental conditions (using piperazine) reduce the particle size up to 5 microns and therefore allow their use by aerosol inhalation.

13.
Chemistry ; 27(59): 14605-14609, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34396599

ABSTRACT

Cleft type receptors showing the oxyanion hole motif have been prepared in a straightforward synthesis starting from the commercial 3,7-dihidroxy-2-naphthoic acid. The double H-bond donor pattern is achieved by the introduction of a sulfonamide group in the C-8 position of naphthalene and a carboxamide at the C-2 position. This cleft, for which the geometry resembles that of an oxyanion hole, is able to adjust to different guests, as shown by the analysis of the X-ray crystal structures of associates with methanol or acetic acid. Combination of hydrogen bonds and charge-transfer interactions led to further stabilization of the complexes, in which the electron-rich aromatic ring of the receptor was close in space to the electron-deficient dinitroaromatic guests. Modelling studies and bidimensional NMR experiments have been carried out to provide additional information.


Subject(s)
Naphthalenes , Sulfonamides , Hydrogen Bonding
14.
Cancers (Basel) ; 13(11)2021 May 21.
Article in English | MEDLINE | ID: mdl-34064007

ABSTRACT

Despite the advances made in the fight against HER2-positive breast cancer, the need for less toxic therapies and strategies that avoid the apparition of resistances is indisputable. For this reason, a targeted nanovehicle for paclitaxel and trastuzumab, used in the first-line treatment of this subtype of breast cancer, had already been developed in a previous study. It yielded good results in vitro but, with the aim of further reducing paclitaxel effective dose and its side effects, a novel drug delivery system was prepared in this work. Thus, polydopamine nanoparticles, which are gaining popularity in cancer nanomedicine, were novelty loaded with paclitaxel and trastuzumab. The effectiveness and selectivity of the nanoparticles obtained were validated in vitro with different HER2-overexpressing tumor and stromal cell lines. These nanoparticles showed more remarkable antitumor activity than the nanosystem previously designed and, in addition, to affect stromal cell viability rate less than the parent drug. Moreover, loaded polydopamine nanoparticles, which notably increased the number of apoptotic HER2-positive breast cancer cells after treatment, also maintained an efficient antineoplastic effect when validated in tumor spheroids. Thereby, these bioinspired nanoparticles charged with both trastuzumab and paclitaxel may represent an excellent approach to improve current HER2-positive breast cancer therapies.

15.
Int J Mol Sci ; 22(6)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808898

ABSTRACT

Ferroptosis is gaining followers as mechanism of selective killing cancer cells in a non-apoptotic manner, and novel nanosystems capable of inducing this iron-dependent death are being increasingly developed. Among them, polydopamine nanoparticles (PDA NPs) are arousing interest, since they have great capability of chelating iron. In this work, PDA NPs were loaded with Fe3+ at different pH values to assess the importance that the pH may have in determining their therapeutic activity and selectivity. In addition, doxorubicin was also loaded to the nanoparticles to achieve a synergist effect. The in vitro assays that were performed with the BT474 and HS5 cell lines showed that, when Fe3+ was adsorbed in PDA NPs at pH values close to which Fe(OH)3 begins to be formed, these nanoparticles had greater antitumor activity and selectivity despite having chelated a smaller amount of Fe3+. Otherwise, it was demonstrated that Fe3+ could be released in the late endo/lysosomes thanks to their acidic pH and their Ca2+ content, and that when Fe3+ was co-transported with doxorubicin, the therapeutic activity of PDA NPs was enhanced. Thus, reported PDA NPs loaded with both Fe3+ and doxorubicin may constitute a good approach to target breast tumors.


Subject(s)
Antineoplastic Agents/pharmacology , Ferroptosis/drug effects , Indoles/chemistry , Indoles/pharmacology , Nanoparticles/chemistry , Polymers/chemistry , Polymers/pharmacology , Animals , Breast Neoplasms , Calcium/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Synergism , Female , Humans , Iron/chemistry , Iron/metabolism , Mice , Reactive Oxygen Species/metabolism
16.
Polymers (Basel) ; 13(6)2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33809920

ABSTRACT

The rheological behavior, in terms of steady and oscillatory shear flow, of Laponite® with different polysaccharides (alginate, chitosan, xanthan gum and levan) in salt-free solutions was studied. Results showed that a higher polymer concentration increased the zero-rate viscosity and decreased the critical strain rate (Cross model fit) as well as increasing the elastic and viscous moduli. Those properties (zero-rate viscosity and critical strain rate) can be a suitable indicator of the effect of the Laponite® on the shear flow behavior for the different solutions. Specifically, the effect of the Laponite® predominates for solutions with large critical strain rate and low zero-rate viscosity, modifying significantly the previous parameters and even the yield stress (if existing). On the other hand, larger higher polymeric concentration hinders the formation of the platelet structure, and polymer entanglement becomes predominant. Furthermore, the addition of high concentrations of Laponite® increases the elastic nature, but without modifying the typical mechanical spectra for polymeric solutions. Finally, Laponite® was added to (previously crosslinked) gels of alginate and chitosan, obtaining different results depending on the material. These results highlight the possibility of predicting qualitatively the impact of the Laponite® on different polymeric solutions depending on the solutions properties.

17.
Brain Sci ; 11(2)2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33671675

ABSTRACT

Suitable in vivo and in vitro models are instrumental for the development of new drugs aimed at improving symptoms or progression of multiple sclerosis (MS). The cuprizone (CPZ)-induced murine model has gained momentum in recent decades, aiming to address the demyelination component of the disease. This work aims at assessing the differential cytotoxicity of CPZ in cells of different types and from different species: human oligodendroglial (HOG), human neuroblastoma (SH-SY5Y), human glioblastoma (T-98), and mouse microglial (N-9) cell lines. Moreover, the effect of CPZ was investigated in primary rat brain cells. Cell viability was assayed by oxygen rate consumption and by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide-based (MTT) method. Our results demonstrated that CPZ did not cause death in any of the assayed cell models but affected mitochondrial function and aerobic cell respiration, thus compromising cell metabolism in neural cells and neuron-glia co-cultures. In this sense, we found differential vulnerability between glial cells and neurons as is the case of the CPZ-induced mouse model of MS. In addition, our findings demonstrated that reduced viability was spontaneous reverted in a time-dependent manner by treatment discontinuation. This reversible cell-based model may help to further investigate the role of mitochondria in the disease, and study the molecular intricacies underlying the pathophysiology of the MS and other demyelinating diseases.

18.
Int J Mol Sci ; 22(3)2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33514021

ABSTRACT

Apolipoprotein D (Apo D) overexpression is a general finding across neurodegenerative conditions so the role of this apolipoprotein in various neuropathologies such as multiple sclerosis (MS) has aroused a great interest in last years. However, its mode of action, as a promising compound for the development of neuroprotective drugs, is unknown. The aim of this work was to address the potential of Apo D to prevent the action of cuprizone (CPZ), a toxin widely used for developing MS models, in oligodendroglial and neuroblastoma cell lines. On one hand, immunocytochemical quantifications and gene expression measures showed that CPZ compromised neural mitochondrial metabolism but did not induce the expression of Apo D, except in extremely high doses in neurons. On the other hand, assays of neuroprotection demonstrated that antipsychotic drug, clozapine, induced an increase in Apo D synthesis only in the presence of CPZ, at the same time that prevented the loss of viability caused by the toxin. The effect of the exogenous addition of human Apo D, once internalized, was also able to directly revert the loss of cell viability caused by treatment with CPZ by a reactive oxygen species (ROS)-independent mechanism of action. Taken together, our results suggest that increasing Apo D levels, in an endo- or exogenous way, moderately prevents the neurotoxic effect of CPZ in a cell model that seems to replicate some features of MS which would open new avenues in the development of interventions to afford MS-related neuroprotection.


Subject(s)
Apolipoproteins D/genetics , Demyelinating Diseases/genetics , Multiple Sclerosis/genetics , Oligodendroglia/metabolism , Animals , Cell Line , Cell Survival/drug effects , Cuprizone/toxicity , Demyelinating Diseases/pathology , Demyelinating Diseases/therapy , Disease Models, Animal , Humans , Mice , Multiple Sclerosis/pathology , Multiple Sclerosis/therapy , Neuroprotective Agents/therapeutic use , Oligodendroglia/drug effects , Oligodendroglia/pathology , Reactive Oxygen Species/metabolism
19.
Colloids Surf B Biointerfaces ; 199: 111506, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33338881

ABSTRACT

Polydopamine nanoparticles (PD NPs) have been synthesized in the present work through the oxidative polymerization of dopamine in aqueous media containing five different types of alcohol in a constant solvent volume ratio. We have shown that the type of alcohol, along with the ammonium hydroxide concentration used in the synthesis process, conditions particle size. Additionally, it has been found that the type of alcohol employed influences the well-known capacity of polydopamine nanoparticles to adsorb iron. As a consequence, since a ferroptosis-like mechanism may account for the cytotoxicity of these nanoparticles, the type of alcohol could also have a determining role in their antineoplastic activity. Here, the existence of a correlation between the ability of polydopamine nanoparticles to load Fe3+ and their toxic effect on breast cancer cells has been proven. For instance, nanoparticles synthesized using 2-propanol adsorbed more Fe3+ and had the greatest capacity to reduce breast tumor cell viability. Moreover, none of the nanoparticle synthesized with the different alcohols significantly decreased normal cell survival. Cancer cells present greater iron-dependence than healthy cells and this fact may explain why polydopamine nanoparticles toxicity, in which Fenton chemistry could be implicated, seems tumor-specific.


Subject(s)
Antineoplastic Agents , Nanoparticles , Alcohols , Antineoplastic Agents/pharmacology , Indoles , Polymers , Water
20.
Nanomaterials (Basel) ; 10(9)2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32859026

ABSTRACT

HER2 overexpression, which occurs in a fifth of diagnosed breast cancers as well as in other types of solid tumors, has been traditionally linked to greater aggressiveness. Nevertheless, the clinical introduction of trastuzumab has helped to improve HER2-positive patients' outcomes. As a consequence, nanotechnology has taken advantage of the beneficial effects of the administration of this antibody and has employed it to develop HER2-targeting nanomedicines with promising therapeutic activity and limited toxicity. In this review, the molecular pathways that could be responsible for trastuzumab antitumor activity will be briefly summarized. In addition, since the conjugation strategies that are followed to develop targeting nanomedicines are essential to maintaining their efficacy and tolerability, the ones most employed to decorate drug-loaded nanoparticles and liposomes with trastuzumab will be discussed here. Thus, the advantages and disadvantages of performing this trastuzumab conjugation through adsorption or covalent bindings (through carbodiimide, maleimide, and click-chemistry) will be described, and several examples of targeting nanovehicles developed following these strategies will be commented on. Moreover, conjugation methods employed to synthesized trastuzumab-based antibody drug conjugates (ADCs), among which T-DM1 is well known, will be also examined. Finally, although trastuzumab-decorated nanoparticles and liposomes and trastuzumab-based ADCs have proven to have better selectivity and efficacy than loaded drugs, trastuzumab administration is sometimes related to side toxicities and the apparition of resistances. For this reason also, this review focuses at last on the important role that newer antibodies and peptides are acquiring these days in the development of HER2-targeting nanomedicines.

SELECTION OF CITATIONS
SEARCH DETAIL
...