Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep Med ; 5(3): 101440, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38402622

ABSTRACT

Transmasculine people usually reach amenorrhea within 6 months of adequate testosterone treatment. It is often assumed that no ovulation occurs during amenorrhea. However, in this study, we report recent ovulatory activity in amenorrheic transmasculine people on testosterone therapy at gender-affirming oophorectomy. Histological signs of recent ovulatory activity, including the presence of ovulatory follicles, corpus luteum, and corpus albicans, are observed in 17 of 52 individuals (33%). This is not significantly correlated to the duration, testosterone serum levels, or type of testosterone used. These results suggest that amenorrhea does not equal anovulation in transmasculine people on adequate testosterone therapy, emphasizing the importance of contraception for people who engage in sexual activity that can result in pregnancy.


Subject(s)
Amenorrhea , Testosterone , Pregnancy , Female , Humans , Testosterone/therapeutic use , Amenorrhea/drug therapy , Ovulation
2.
Int J Mol Sci ; 24(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38069168

ABSTRACT

The reproductive lifespan in humans is regulated by a delicate cyclical balance between follicular recruitment and atresia in the ovary. The majority of the small antral follicles present in the ovary are progressively lost through atresia without reaching dominance, but this process remains largely underexplored. In our study, we investigated the characteristics of atretic small antral follicles and proposed a classification system based on molecular changes observed in granulosa cells, theca cells, and extracellular matrix deposition. Our findings revealed that atresia spreads in the follicle with wave-like dynamics, initiating away from the cumulus granulosa cells. We also observed an enrichment of CD68+ macrophages in the antrum during the progression of follicular atresia. This work not only provides criteria for classifying three stages of follicular atresia in small antral follicles in the human ovary but also serves as a foundation for understanding follicular degeneration and ultimately preventing or treating premature ovarian failure. Understanding follicular remodeling in the ovary could provide a means to increase the number of usable follicles and delay the depletion of the follicular reserve, increasing the reproductive lifespan.


Subject(s)
Follicular Atresia , Ovary , Humans , Female , Ovarian Follicle , Granulosa Cells , Theca Cells
3.
Bioengineering (Basel) ; 10(7)2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37508859

ABSTRACT

Ovarian dysfunction poses significant threats to the health of female individuals. Ovarian failure can lead to infertility due to the lack or inefficient production of fertilizable eggs. In addition, the ovary produces hormones, such as estrogen and progesterone, that play crucial roles not only during pregnancy, but also in maintaining cardiovascular, bone, and cognitive health. Decline in estrogen and progesterone production due to ovarian dysfunction can result in menopausal-associated syndromes and lead to conditions, such as osteoporosis, cardiovascular disease, and Alzheimer's disease. Recent advances in the design of bioengineered three-dimensional (3D) ovarian models, such as ovarian organoids or artificial ovaries, have made it possible to mimic aspects of the cellular heterogeneity and functional characteristics of the ovary in vitro. These novel technologies are emerging as valuable tools for studying ovarian physiology and pathology and may provide alternatives for fertility preservation. Moreover, they may have the potential to restore aspects of ovarian function, improving the quality of life of the (aging) female population. This review focuses on the state of the art of 3D ovarian platforms, including the latest advances modeling female reproduction, female physiology, ovarian cancer, and drug screening.

4.
Front Endocrinol (Lausanne) ; 13: 936765, 2022.
Article in English | MEDLINE | ID: mdl-35966050

ABSTRACT

Current strategies for fertility preservation include the cryopreservation of embryos, mature oocytes or ovarian cortical tissue for autologous transplantation. However, not all patients that could benefit from fertility preservation can use the currently available technology. In this regard, obtaining functional mature oocytes from ovarian cortical tissue in vitro would represent a major breakthrough in fertility preservation as well as in human medically assisted reproduction. In this study, we have used a microfluidics platform to culture cryopreserved-thawed human cortical tissue for a period of 8 days and evaluated the effect of two different flow rates in follicular activation and growth. The results showed that this dynamic system supported follicular development up to the secondary stage within 8 days, albeit with low efficiency. Surprisingly, the stromal cells in the ovarian cortical tissue were highly sensitive to flow and showed high levels of apoptosis when cultured under high flow rate. Moreover, after 8 days in culture, the stromal compartment showed increase levels of collagen deposition, in particular in static culture. Although microfluidics dynamic platforms have great potential to simulate tissue-level physiology, this system still needs optimization to meet the requirements for an efficient in vitro early follicular growth.


Subject(s)
Fertility Preservation , Ovarian Follicle , Cryopreservation/methods , Female , Fertility Preservation/methods , Humans , Microfluidics , Oocytes
5.
Int J Mol Sci ; 22(21)2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34769386

ABSTRACT

Human ovarian folliculogenesis is a highly regulated and complex process. Characterization of follicular cell signatures during this dynamic process is important to understand follicle fate (to grow, become dominant, or undergo atresia). The transcriptional signature of human oocytes and granulosa cells (GCs) in early-growing and ovulatory follicles have been previously described; however, that of oocytes with surrounding GCs in small antral follicles have not been studied yet. Here, we have generated a unique dataset of single-cell transcriptomics (SmartSeq2) consisting of the oocyte with surrounding GCs from several individual (non-dominant) small antral follicles isolated from adult human ovaries. We have identified two main types of (healthy) follicles, with a distinct oocyte and GC signature. Using the CellphoneDB algorithm, we then investigated the bi-directional ligand-receptor interactions regarding the transforming growth factor-ß (TGFß)/bone morphogenetic protein (BMP), wingless-type (MMTV)-integration site (WNT), NOTCH, and receptor tyrosine kinases (RTK) signaling pathways between oocyte and GCs within each antral follicle type. Our work not only revealed the diversity of small antral follicles, but also contributes to fill the gap in mapping the molecular landscape of human folliculogenesis and oogenesis.


Subject(s)
Biomarkers/metabolism , Oocytes/metabolism , Oogenesis , Ovarian Follicle/metabolism , Single-Cell Analysis/methods , Transcriptome , Female , Humans , Oocytes/cytology , Ovarian Follicle/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...