Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Orthop Res ; 33(2): 193-8, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25399506

ABSTRACT

Wear particle-induced inflammatory bone loss (osteolysis) is the leading cause of total hip arthroplasty (THA) failure. Individual susceptibility to osteolysis is modulated by genetic variation. In this 2-stage case-control association study we examined whether variation within candidate genes in inflammatory and bone turnover signaling pathways associates with susceptibility to osteolysis and time to prosthesis failure. We examined two cohorts, comprising 758 (347 male) Caucasian subjects who had undergone THA with a metal on polyethylene bearing couple; 315 of whom had developed osteolysis. Key genes within inflammatory, bone resorption, and bone formation pathways were screened for common variants by pairwise-SNP tagging using a 2-stage association analysis approach. In the discovery cohort four SNPs within RANK, and one each within KREMEN2, OPG, SFRP1, and TIRAP (p < 0.05) were associated with osteolysis susceptibility. Two SNPs within LRP6, and one each within LRP5, NOD2, SOST, SQSTM1, TIRAP, and TRAM associated with time to implant failure (p < 0.05). Meta-analysis of the two cohorts identified four SNPs within RANK, and one each within KREMEN2, OPG, SFRP1, and TIRAP associated with osteolysis susceptibility (p < 0.05). Genetic variation within inflammatory signaling and bone turnover pathways may play a role in susceptibility to osteolysis.


Subject(s)
Osteolysis/genetics , Prosthesis Failure/etiology , Aged , Case-Control Studies , Female , Genetic Variation , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...