Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Insect Biochem Mol Biol ; 149: 103834, 2022 10.
Article in English | MEDLINE | ID: mdl-36087890

ABSTRACT

Pantothenate (Pan) is an essential nutrient required by both the mosquito vector and malaria parasite. We previously demonstrated that increasing pantothenate kinase (PanK) activity and co-enzyme A (CoA) biosynthesis led to significantly decreased parasite infection prevalence and intensity in the malaria mosquito Anopheles stephensi. In this study, we demonstrate that Pan stores in A. stephensi are a limited resource and that manipulation of PanK levels or activity, via small molecule modulators of PanK or transgenic mosquitoes, leads to the conversion of Pan to CoA and an overall reduction in Pan levels with minimal to no effects on mosquito fitness. Transgenic A. stephensi lines with repressed insulin signaling due to PTEN overexpression or repressed c-Jun N-terminal kinase (JNK) signaling due to MAPK phosphatase 4 (MKP4) overexpression exhibited enhanced PanK levels and significant reductions in Pan relative to non-transgenic controls, with the PTEN line also exhibiting significantly increased CoA levels. Provisioning of the PTEN line with the small molecule PanK modulator PZ-2891 increased CoA levels while provisioning Compound 7 decreased CoA levels, affirming chemical manipulation of mosquito PanK. We assessed effects of these small molecules on A. stephensi lifespan, reproduction and metabolism under optimized laboratory conditions. PZ-2891 and Compound 7 had no impact on A. stephensi survival when delivered via bloodmeal throughout mosquito lifespan. Further, PZ-2891 provisioning had no impact on egg production over the first two reproductive cycles. Finally, PanK manipulation with small molecules was associated with minimal impacts on nutritional stores in A. stephensi mosquitoes under optimized rearing conditions. Together with our previous data demonstrating that PanK activation was associated with significantly increased A. stephensi resistance to Plasmodium falciparum infection, the studies herein demonstrate a lack of fitness costs of mosquito Pan depletion as a basis for a feasible, novel strategy to control parasite infection of anopheline mosquitoes.


Subject(s)
Anopheles , Insulins , Malaria , Animals , Animals, Genetically Modified , Anopheles/metabolism , Coenzyme A/metabolism , Insulins/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinase Phosphatases/metabolism , Phosphotransferases (Alcohol Group Acceptor)
2.
Biomolecules ; 11(6)2021 05 29.
Article in English | MEDLINE | ID: mdl-34072373

ABSTRACT

Malaria parasites require pantothenate from both human and mosquito hosts to synthesize coenzyme A (CoA). Specifically, mosquito-stage parasites cannot synthesize pantothenate de novo or take up preformed CoA from the mosquito host, making it essential for the parasite to obtain pantothenate from mosquito stores. This makes pantothenate utilization an attractive target for controlling sexual stage malaria parasites in the mosquito. CoA is synthesized from pantothenate in a multi-step pathway initiated by the enzyme pantothenate kinase (PanK). In this work, we manipulated A. stephensi PanK activity and assessed the impact of mosquito PanK activity on the development of two malaria parasite species with distinct genetics and life cycles: the human parasite Plasmodium falciparum and the mouse parasite Plasmodium yoelii yoelii 17XNL. We identified two putative A. stephensi PanK isoforms encoded by a single gene and expressed in the mosquito midgut. Using both RNAi and small molecules with reported activity against human PanK, we confirmed that A. stephensi PanK manipulation was associated with corresponding changes in midgut CoA levels. Based on these findings, we used two small molecule modulators of human PanK activity (PZ-2891, compound 7) at reported and ten-fold EC50 doses to examine the effects of manipulating A. stephensi PanK on malaria parasite infection success. Our data showed that oral provisioning of 1.3 nM and 13 nM PZ-2891 increased midgut CoA levels and significantly decreased infection success for both Plasmodium species. In contrast, oral provisioning of 62 nM and 620 nM compound 7 decreased CoA levels and significantly increased infection success for both Plasmodium species. This work establishes the A. stephensi CoA biosynthesis pathway as a potential target for broadly blocking malaria parasite development in anopheline hosts. We envision this strategy, with small molecule PanK modulators delivered to mosquitoes via attractive bait stations, working in concert with deployment of parasite-directed novel pantothenamide drugs to block parasite infection in the human host. In mosquitoes, depletion of pantothenate through manipulation to increase CoA biosynthesis is expected to negatively impact Plasmodium survival by starving the parasite of this essential nutrient. This has the potential to kill both wild type parasites and pantothenamide-resistant parasites that could develop under pantothenamide drug pressure if these compounds are used as future therapeutics for human malaria.


Subject(s)
Anopheles , Coenzyme A/biosynthesis , Insect Proteins/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Plasmodium falciparum/metabolism , Plasmodium yoelii/metabolism , Animals , Anopheles/enzymology , Anopheles/parasitology , Enzyme Activation , Humans
3.
Genes (Basel) ; 12(1)2021 01 19.
Article in English | MEDLINE | ID: mdl-33478058

ABSTRACT

Mitochondrial integrity and homeostasis in the midgut are key factors controlling mosquito fitness and anti-pathogen resistance. Targeting genes that regulate mitochondrial dynamics represents a potential strategy for limiting mosquito-borne diseases. AMP-activated protein kinase (AMPK) is a key cellular energy sensor found in nearly all eukaryotic cells. When activated, AMPK inhibits anabolic pathways that consume ATP and activates catabolic processes that synthesize ATP. In this study, we overexpressed a truncated and constitutively active α-subunit of AMPK under the control of the midgut-specific carboxypeptidase promotor in the midgut of female Anopheles stephensi. As expected, AMPK overexpression in homozygous transgenic mosquitoes was associated with changes in nutrient storage and metabolism, decreasing glycogen levels at 24 h post-blood feeding when transgene expression was maximal, and concurrently increasing circulating trehalose at the same time point. When transgenic lines were challenged with Plasmodium falciparum, we observed a significant decrease in the prevalence and intensity of infection relative to wild type controls. Surprisingly, we did not observe a significant difference in the survival of adult mosquitoes fed either sugar only or both sugar and bloodmeals throughout adult life. This may be due to the limited period that the transgene was activated before homeostasis was restored. However, we did observe a significant decrease in egg production, suggesting that manipulation of AMPK activity in the mosquito midgut resulted in the re-allocation of resources away from egg production. In summary, this work identifies midgut AMPK activity as an important regulator of metabolism, reproduction, and innate immunity in An. stephensi, a highly invasive and important malaria vector species.


Subject(s)
AMP-Activated Protein Kinases/genetics , Anopheles/genetics , Insect Proteins/genetics , Intestinal Mucosa/enzymology , Malaria, Falciparum/prevention & control , AMP-Activated Protein Kinases/metabolism , Animals , Animals, Genetically Modified , Anopheles/enzymology , Anopheles/metabolism , Anopheles/parasitology , Disease Resistance/genetics , Disease Resistance/immunology , Energy Metabolism/genetics , Energy Metabolism/immunology , Female , Genetic Engineering , Host-Parasite Interactions/genetics , Immunity, Innate/genetics , Insect Proteins/metabolism , Intestinal Mucosa/parasitology , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Mitochondria/metabolism , Mosquito Vectors/enzymology , Mosquito Vectors/genetics , Mosquito Vectors/metabolism , Mosquito Vectors/parasitology , Plasmodium falciparum/pathogenicity , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL
...