Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 189: 114711, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36807047

ABSTRACT

The best-selling compostable plastics, polylactic acid (PLA) and polybutylene adipate-co-terephthalate (PBAT), can accidentally end up in the marine environment due to plastic waste mismanagement. Their degradation and colonization by microbial communities are poorly documented in marine conditions. To better understand their degradation, as well as the dynamics of bacterial colonization after a long immersion time (99, 160, and 260 days), PBAT, semicrystalline, and amorphous PLA films were immersed in a marine aquarium. Sequencing and chemical analyses were used in parallel to characterize these samples. Despite the variation in the chemical intrinsic parameters of these plastics, their degradation remains very slow. Microbial community structure varied according to the immersion time with a high proportion of Archaea. Moreover, the plastisphere structure of PBAT was specific. A better understanding of compostable plastic degradability is crucial to evaluate their impact on ecosystems and to eco-design new recyclable plastics with optimal degradation properties.


Subject(s)
Biodegradable Plastics , Microbiota , Polymers , Immersion , Polyesters , Plastics/metabolism , Biofilms
2.
Microorganisms ; 10(5)2022 May 20.
Article in English | MEDLINE | ID: mdl-35630500

ABSTRACT

Cocultures have been widely explored for their use in deciphering microbial interaction and its impact on the metabolisms of the interacting microorganisms. In this work, we investigate, in different liquid coculture conditions, the compatibility of two microorganisms with the potential for the biocontrol of plant diseases: the fungus Trichoderma harzianum IHEM5437 and the bacterium Bacillus velezensis GA1 (a strong antifungal lipopeptide producing strain). While the Bacillus overgrew the Trichoderma in a rich medium due to its antifungal lipopeptide production, a drastically different trend was observed in a medium in which a nitrogen nutritional dependency was imposed. Indeed, in this minimum medium containing nitrate as the sole nitrogen source, cooperation between the bacterium and the fungus was established. This is reflected by the growth of both species as well as the inhibition of the expression of Bacillus genes encoding lipopeptide synthetases. Interestingly, the growth of the bacterium in the minimum medium was enabled by the amendment of the culture by the fungal supernatant, which, in this case, ensures a high production yield of lipopeptides. These results highlight, for the first time, that Trichoderma harzianum and Bacillus velezensis are able, in specific environmental conditions, to adapt their metabolisms in order to grow together.

3.
Mar Pollut Bull ; 179: 113660, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35460946

ABSTRACT

Plastics accumulate in the environment and the Mediterranean Sea is one of the most polluted sea in the world. The plastic surface is rapidly colonized by microorganisms, forming the plastisphere. Our unique sampling supplied 107 plastic pieces from 22 geographical sites from four aquatic ecosystems (river, estuary, harbor and inshore) in the south of France in order to better understand the parameters which influence biofilm composition. In parallel, 48 enrichment cultures were performed to investigate the presence of plastic degrading-bacteria in the plastisphere. In this context, we showed that the most important drivers of microbial community structure were the sampling site followed by the polymer chemical composition. The study of pathogenic genus distribution highlighted that only 11% of our plastic samples contained higher proportions of Vibrio compared to the natural environment. Finally, results of the enrichment cultures showed a selection of hydrocarbon-degrading microorganisms suggesting their potential role in the plastic degradation.


Subject(s)
Microbiota , Rivers , Bacteria , Biofilms , Plastics
4.
J Hazard Mater ; 419: 126526, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34328083

ABSTRACT

Different plastic types considered as compostable are found on the market such as petro-based (e.g., polybutylene adipate terephthalate (PBAT)) or bio-based plastics (e.g., polylactic acid, (PLA)). Even if their degradation has been confirmed in industrial compost conditions, investigation of their degradation in natural marine environment has been limited. To better understand biodegradation into natural marine environment, commercial compostable (PBAT, semi-crystalline and amorphous PLA) and non-compostable polymers (low density polyethylene, polystyrene, polyethylene terephthalate, polyvinyl chloride) were submerged in situ on the sediment and in the water column in the Mediterranean Sea. These samples were studied by chemical and microbiological approaches. After 82 days of immersion, no significant bacterial degradation of the different polymers was observed, except some abiotic alterations of PBAT and LDPE probably due to a photooxidation process. However, after 80 days in an enrichment culture containing plastic films as a main carbon source, Marinomonas genus was specifically selected on the PBAT and a weight loss of 12% was highlighted. A better understanding of the bacterial community colonizing these plastics is essential for an eco-design of new biodegradable polymers to allow a rapid degradation in aquatic environment.


Subject(s)
Composting , Polymers , Biodegradation, Environmental , Biofilms , Plastics
5.
J Hazard Mater ; 380: 120899, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31326835

ABSTRACT

Most plastics are released to the environment in landfills and around 32% end up in the sea, inducing large ecological and health impacts. The plastics constitute a physical substrate and potential carbon source for microorganisms. The present study compares the structures of bacterial communities from floating plastics, sediment-associated plastics and sediments from the Mediterranean Sea. The 16S rRNA microbiome profiles of surface and sediment plastic-associated microbial biofilms from the same geographic location differ significantly, with the omnipresence of Bacteroidetes and Gammaproteobacteria. Our research confirmed that plastisphere hosts microbial communities were environmental distinct niche. In parallel, this study used environmental samples to investigate the enrichment of potential plastic-degrading bacteria with Low Density PolyEthylene (LDPE), PolyEthylene Terephthalate (PET) and PolyStyrene (PS) plastics as the sole carbon source. In this context, we showed that the bacterial community composition is clearly plastic nature dependent. Hydrocarbon-degrading bacteria such as Alcanivorax, Marinobacter and Arenibacter genera are enriched with LDPE and PET, implying that these bacteria are potential players in plastic degradation. Finally, our data showed for the first time the ability of Alcanivorax borkumensis to form thick biofilms specifically on LDPE and to degrade this petroleum-based plastic.


Subject(s)
Alcanivoraceae/metabolism , Ecosystem , Plastics , Polyethylene/metabolism , Seawater/microbiology , Biodegradation, Environmental
SELECTION OF CITATIONS
SEARCH DETAIL
...