Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
HGG Adv ; 3(2): 100097, 2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35321494

ABSTRACT

Mitochondrial disorders are clinically and genetically heterogeneous, with variants in mitochondrial or nuclear genes leading to varied clinical phenotypes. TAMM41 encodes a mitochondrial protein with cytidine diphosphate-diacylglycerol synthase activity: an essential early step in the biosynthesis of phosphatidylglycerol and cardiolipin. Cardiolipin is a mitochondria-specific phospholipid that is important for many mitochondrial processes. We report three unrelated individuals with mitochondrial disease that share clinical features, including lethargy at birth, hypotonia, developmental delay, myopathy, and ptosis. Whole exome and genome sequencing identified compound heterozygous variants in TAMM41 in each proband. Western blot analysis in fibroblasts showed a mild oxidative phosphorylation (OXPHOS) defect in only one of the three affected individuals. In skeletal muscle samples, however, there was severe loss of subunits of complexes I-IV and a decrease in fully assembled OXPHOS complexes I-V in two subjects as well as decreased TAMM41 protein levels. Similar to the tissue-specific observations on OXPHOS, cardiolipin levels were unchanged in subject fibroblasts but significantly decreased in the skeletal muscle of affected individuals. To assess the functional impact of the TAMM41 missense variants, the equivalent mutations were modeled in yeast. All three mutants failed to rescue the growth defect of the Δtam41 strains on non-fermentable (respiratory) medium compared with wild-type TAM41, confirming the pathogenicity of the variants. We establish that TAMM41 is an additional gene involved in mitochondrial phospholipid biosynthesis and modification and that its deficiency results in a mitochondrial disorder, though unlike families with pathogenic AGK (Sengers syndrome) and TAFAZZIN (Barth syndrome) variants, there was no evidence of cardiomyopathy.

2.
N Engl J Med ; 384(25): 2406-2417, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34161705

ABSTRACT

BACKGROUND: Autophagy is the major intracellular degradation route in mammalian cells. Systemic ablation of core autophagy-related (ATG) genes in mice leads to embryonic or perinatal lethality, and conditional models show neurodegeneration. Impaired autophagy has been associated with a range of complex human diseases, yet congenital autophagy disorders are rare. METHODS: We performed a genetic, clinical, and neuroimaging analysis involving five families. Mechanistic investigations were conducted with the use of patient-derived fibroblasts, skeletal muscle-biopsy specimens, mouse embryonic fibroblasts, and yeast. RESULTS: We found deleterious, recessive variants in human ATG7, a core autophagy-related gene encoding a protein that is indispensable to classical degradative autophagy. Twelve patients from five families with distinct ATG7 variants had complex neurodevelopmental disorders with brain, muscle, and endocrine involvement. Patients had abnormalities of the cerebellum and corpus callosum and various degrees of facial dysmorphism. These patients have survived with impaired autophagic flux arising from a diminishment or absence of ATG7 protein. Although autophagic sequestration was markedly reduced, evidence of basal autophagy was readily identified in fibroblasts and skeletal muscle with loss of ATG7. Complementation of different model systems by deleterious ATG7 variants resulted in poor or absent autophagic function as compared with the reintroduction of wild-type ATG7. CONCLUSIONS: We identified several patients with a neurodevelopmental disorder who have survived with a severe loss or complete absence of ATG7, an essential effector enzyme for autophagy without a known functional paralogue. (Funded by the Wellcome Centre for Mitochondrial Research and others.).


Subject(s)
Abnormalities, Multiple/genetics , Ataxia/genetics , Autophagy-Related Protein 7/genetics , Autophagy/genetics , Developmental Disabilities/genetics , Mutation, Missense , Adolescent , Adult , Autophagy/physiology , Autophagy-Related Protein 7/physiology , Cells, Cultured , Cerebellum/abnormalities , Computer Simulation , Face/abnormalities , Female , Fibroblasts , Genes, Recessive , Humans , Infant , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Nervous System Malformations/genetics , Pedigree , Phenotype
3.
Int J Mol Sci ; 22(9)2021 Apr 24.
Article in English | MEDLINE | ID: mdl-33923309

ABSTRACT

Mitochondrial diseases result from inherited or spontaneous mutations in mitochondrial or nuclear DNA, leading to an impairment of the oxidative phosphorylation responsible for the synthesis of ATP. To date, there are no effective pharmacological therapies for these pathologies. We performed a yeast-based screening to search for therapeutic drugs to be used for treating mitochondrial diseases associated with dominant mutations in the nuclear ANT1 gene, which encodes for the mitochondrial ADP/ATP carrier. Dominant ANT1 mutations are involved in several degenerative mitochondrial pathologies characterized by the presence of multiple deletions or depletion of mitochondrial DNA in tissues of affected patients. Thanks to the presence in yeast of the AAC2 gene, orthologue of human ANT1, a yeast mutant strain carrying the M114P substitution equivalent to adPEO-associated L98P mutation was created. Five molecules were identified for their ability to suppress the defective respiratory growth phenotype of the haploid aac2M114P. Furthermore, these molecules rescued the mtDNA mutability in the heteroallelic AAC2/aac2M114P strain, which mimics the human heterozygous condition of adPEO patients. The drugs were effective in reducing mtDNA instability also in the heteroallelic strain carrying the R96H mutation equivalent to the more severe de novo dominant missense mutation R80H, suggesting a general therapeutic effect on diseases associated with dominant ANT1 mutations.


Subject(s)
Adenine Nucleotide Translocator 1/genetics , High-Throughput Screening Assays/methods , Mitochondrial ADP, ATP Translocases/genetics , Mitochondrial Diseases/drug therapy , Mutation , Pharmaceutical Preparations/administration & dosage , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/growth & development , DNA, Mitochondrial/genetics , Genes, Dominant , Humans , Mitochondrial Diseases/genetics , Ophthalmoplegia/drug therapy , Ophthalmoplegia/genetics , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics
4.
J Cell Biol ; 220(4)2021 04 05.
Article in English | MEDLINE | ID: mdl-33734301

ABSTRACT

Acute heat stress (aHS) can induce strong developmental defects in Caenorhabditis elegans larva but not lethality or sterility. This stress results in transitory fragmentation of mitochondria, formation of aggregates in the matrix, and decrease of mitochondrial respiration. Moreover, active autophagic flux associated with mitophagy events enables the rebuilding of the mitochondrial network and developmental recovery, showing that the autophagic response is protective. This adaptation to aHS does not require Pink1/Parkin or the mitophagy receptors DCT-1/NIX and FUNDC1. We also find that mitochondria are a major site for autophagosome biogenesis in the epidermis in both standard and heat stress conditions. In addition, we report that the depletion of the dynamin-related protein 1 (DRP-1) affects autophagic processes and the adaptation to aHS. In drp-1 animals, the abnormal mitochondria tend to modify their shape upon aHS but are unable to achieve fragmentation. Autophagy is induced, but autophagosomes are abnormally elongated and clustered on mitochondria. Our data support a role for DRP-1 in coordinating mitochondrial fission and autophagosome biogenesis in stress conditions.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Dynamins/metabolism , Heat-Shock Response , Mitochondria/metabolism , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Dynamins/genetics , Mitophagy
5.
Cell Death Dis ; 12(1): 100, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33469036

ABSTRACT

The DNA polymerase gamma (Polg) is a nuclear-encoded enzyme involved in DNA replication in animal mitochondria. In humans, mutations in the POLG gene underlie a set of mitochondrial diseases characterized by mitochondrial DNA (mtDNA) depletion or deletion and multiorgan defects, named POLG disorders, for which an effective therapy is still needed. By applying antisense strategies, ENU- and CRISPR/Cas9-based mutagenesis, we have generated embryonic, larval-lethal and adult-viable zebrafish Polg models. Morphological and functional characterizations detected a set of phenotypes remarkably associated to POLG disorders, including cardiac, skeletal muscle, hepatic and gonadal defects, as well as mitochondrial dysfunctions and, notably, a perturbed mitochondria-to-nucleus retrograde signaling (CREB and Hypoxia pathways). Next, taking advantage of preliminary evidence on the candidate molecule Clofilium tosylate (CLO), we tested CLO toxicity and then its efficacy in our zebrafish lines. Interestingly, at well tolerated doses, the CLO drug could successfully rescue mtDNA and Complex I respiratory activity to normal levels, even in mutant phenotypes worsened by treatment with Ethidium Bromide. In addition, the CLO drug could efficiently restore cardio-skeletal parameters and mitochondrial mass back to normal values. Altogether, these evidences point to zebrafish as a valuable vertebrate organism to faithfully phenocopy multiple defects detected in POLG patients. Moreover, this model represents an excellent platform to screen, at the whole-animal level, candidate molecules with therapeutic effects in POLG disorders.


Subject(s)
Mitochondrial Diseases/genetics , Quaternary Ammonium Compounds/metabolism , Animals , Disease Models, Animal , Phenotype , Zebrafish
6.
PLoS One ; 14(3): e0214287, 2019.
Article in English | MEDLINE | ID: mdl-30908556

ABSTRACT

Eukaryotic organelles share different components and establish physical contacts to communicate throughout the cell. One of the best-recognized examples of such interplay is the metabolic cooperation and crosstalk between mitochondria and peroxisomes, both organelles being functionally and physically connected and linked to the endoplasmic reticulum (ER). In Saccharomyces cerevisiae, mitochondria are linked to the ER by the ERMES complex that facilitates inter-organelle calcium and phospholipid exchanges. Recently, peroxisome-mitochondria contact sites (PerMit) have been reported and among Permit tethers, one component of the ERMES complex (Mdm34) was shown to interact with the peroxin Pex11, suggesting that the ERMES complex or part of it may be involved in two membrane contact sites (ER-mitochondria and peroxisome- mitochondria). This opens the possibility of exchanges between these three membrane compartments. Here, we investigated in details the role of each ERMES subunit on peroxisome abundance. First, we confirmed previous studies from other groups showing that absence of Mdm10 or Mdm12 leads to an increased number of mature peroxisomes. Secondly, we showed that this is not simply due to respiratory function defect, mitochondrial DNA (mtDNA) loss or mitochondrial network alteration. Finally, we present evidence that the contribution of ERMES subunits Mdm10 and Mdm12 to peroxisome number involves two different mechanisms.


Subject(s)
Peroxisomes/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/physiology , Calcium/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Phospholipids/metabolism , Point Mutation , Saccharomyces cerevisiae Proteins/genetics
7.
Am J Hum Genet ; 101(4): 630-637, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28965846

ABSTRACT

Hearing loss and visual impairment in childhood have mostly genetic origins, some of them being related to sensorial neuronal defects. Here, we report on eight subjects from four independent families affected by auditory neuropathy and optic atrophy. Whole-exome sequencing revealed biallelic mutations in FDXR in affected subjects of each family. FDXR encodes the mitochondrial ferredoxin reductase, the sole human ferredoxin reductase implicated in the biosynthesis of iron-sulfur clusters (ISCs) and in heme formation. ISC proteins are involved in enzymatic catalysis, gene expression, and DNA replication and repair. We observed deregulated iron homeostasis in FDXR mutant fibroblasts and indirect evidence of mitochondrial iron overload. Functional complementation in a yeast strain in which ARH1, the human FDXR ortholog, was deleted established the pathogenicity of these mutations. These data highlight the wide clinical heterogeneity of mitochondrial disorders related to ISC synthesis.


Subject(s)
Ferredoxin-NADP Reductase/genetics , Hearing Loss, Central/genetics , Iron-Sulfur Proteins/metabolism , Iron/metabolism , Mitochondrial Diseases/genetics , Mutation , Optic Atrophy/genetics , Adolescent , Adult , Amino Acid Sequence , Child, Preschool , Female , Ferredoxin-NADP Reductase/chemistry , Ferredoxin-NADP Reductase/metabolism , Genetic Complementation Test , Hearing Loss, Central/enzymology , Hearing Loss, Central/pathology , Humans , Iron-Sulfur Proteins/genetics , Male , Mitochondria/enzymology , Mitochondria/genetics , Mitochondria/pathology , Mitochondrial Diseases/enzymology , Mitochondrial Diseases/pathology , Optic Atrophy/enzymology , Optic Atrophy/pathology , Pedigree , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sequence Alignment , Young Adult
8.
Am J Hum Genet ; 101(2): 283-290, 2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28757203

ABSTRACT

Lipoate serves as a cofactor for the glycine cleavage system (GCS) and four 2-oxoacid dehydrogenases functioning in energy metabolism (α-oxoglutarate dehydrogenase [α-KGDHc] and pyruvate dehydrogenase [PDHc]), or amino acid metabolism (branched-chain oxoacid dehydrogenase, 2-oxoadipate dehydrogenase). Mitochondrial lipoate synthesis involves three enzymatic steps catalyzed sequentially by lipoyl(octanoyl) transferase 2 (LIPT2), lipoic acid synthetase (LIAS), and lipoyltransferase 1 (LIPT1). Mutations in LIAS have been associated with nonketotic hyperglycinemia-like early-onset convulsions and encephalopathy combined with a defect in mitochondrial energy metabolism. LIPT1 deficiency spares GCS deficiency and has been associated with a biochemical signature of combined 2-oxoacid dehydrogenase deficiency leading to early death or Leigh-like encephalopathy. We report on the identification of biallelic LIPT2 mutations in three affected individuals from two families with severe neonatal encephalopathy. Brain MRI showed major cortical atrophy with white matter abnormalities and cysts. Plasma glycine was mildly increased. Affected individuals' fibroblasts showed reduced oxygen consumption rates, PDHc, α-KGDHc activities, leucine catabolic flux, and decreased protein lipoylation. A normalization of lipoylation was observed after expression of wild-type LIPT2, arguing for LIPT2 requirement in intramitochondrial lipoate synthesis. Lipoic acid supplementation did not improve clinical condition nor activities of PDHc, α-KGDHc, or leucine metabolism in fibroblasts and was ineffective in yeast deleted for the orthologous LIP2.


Subject(s)
Acyltransferases/genetics , Atrophy/pathology , Brain Diseases/genetics , Brain/pathology , Lipoylation/genetics , Mitochondria/metabolism , Amino Acids/metabolism , Brain/diagnostic imaging , Brain Diseases/pathology , Brain Mapping/methods , Cells, Cultured , Energy Metabolism/genetics , Energy Metabolism/physiology , Glycine/blood , Humans , Infant, Newborn , Magnetic Resonance Imaging , Mitochondria/genetics , Oxygen Consumption/genetics , Protein Binding/genetics , Thioctic Acid/metabolism
9.
Am J Hum Genet ; 100(1): 151-159, 2017 Jan 05.
Article in English | MEDLINE | ID: mdl-27989324

ABSTRACT

MDH2 encodes mitochondrial malate dehydrogenase (MDH), which is essential for the conversion of malate to oxaloacetate as part of the proper functioning of the Krebs cycle. We report bi-allelic pathogenic mutations in MDH2 in three unrelated subjects presenting with early-onset generalized hypotonia, psychomotor delay, refractory epilepsy, and elevated lactate in the blood and cerebrospinal fluid. Functional studies in fibroblasts from affected subjects showed both an apparently complete loss of MDH2 levels and MDH2 enzymatic activity close to null. Metabolomics analyses demonstrated a significant concomitant accumulation of the MDH substrate, malate, and fumarate, its immediate precursor in the Krebs cycle, in affected subjects' fibroblasts. Lentiviral complementation with wild-type MDH2 cDNA restored MDH2 levels and mitochondrial MDH activity. Additionally, introduction of the three missense mutations from the affected subjects into Saccharomyces cerevisiae provided functional evidence to support their pathogenicity. Disruption of the Krebs cycle is a hallmark of cancer, and MDH2 has been recently identified as a novel pheochromocytoma and paraganglioma susceptibility gene. We show that loss-of-function mutations in MDH2 are also associated with severe neurological clinical presentations in children.


Subject(s)
Brain Diseases/genetics , Citric Acid Cycle , Malate Dehydrogenase/genetics , Mutation , Age of Onset , Alleles , Amino Acid Sequence , Child , Child, Preschool , Citric Acid Cycle/genetics , Fibroblasts/enzymology , Fibroblasts/metabolism , Fumarates/metabolism , Genetic Complementation Test , Humans , Infant , Infant, Newborn , Malate Dehydrogenase/chemistry , Malate Dehydrogenase/metabolism , Malates/metabolism , Male , Metabolomics , Models, Molecular
10.
Am J Hum Genet ; 99(3): 666-673, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27523598

ABSTRACT

Sudden unexpected death in infancy occurs in apparently healthy infants and remains largely unexplained despite thorough investigation. The vast majority of cases are sporadic. Here we report seven individuals from three families affected by sudden and unexpected cardiac arrest between 4 and 20 months of age. Whole-exome sequencing revealed compound heterozygous missense mutations in PPA2 in affected infants of each family. PPA2 encodes the mitochondrial pyrophosphatase, which hydrolyzes inorganic pyrophosphate into two phosphates. This is an essential activity for many biosynthetic reactions and for energy metabolism of the cell. We show that deletion of the orthologous gene in yeast (ppa2Δ) compromises cell viability due to the loss of mitochondria. Expression of wild-type human PPA2, but not PPA2 containing the mutations identified in affected individuals, preserves mitochondrial function in ppa2Δ yeast. Using a regulatable (doxycycline-repressible) gene expression system, we found that the pathogenic PPA2 mutations rapidly inactivate the mitochondrial energy transducing system and prevent the maintenance of a sufficient electrical potential across the inner membrane, which explains the subsequent disappearance of mitochondria from the mutant yeast cells. Altogether these data demonstrate that PPA2 is an essential gene in yeast and that biallelic mutations in PPA2 cause a mitochondrial disease leading to sudden cardiac arrest in infants.


Subject(s)
Alleles , Death, Sudden, Cardiac/etiology , Inorganic Pyrophosphatase/genetics , Mitochondrial Proteins/genetics , Mutation/genetics , Death, Sudden, Cardiac/pathology , Diphosphates , Exome/genetics , Female , Gene Deletion , Genes, Essential/genetics , Genetic Complementation Test , Heterozygote , Humans , Infant , Inorganic Pyrophosphatase/metabolism , Male , Membrane Potential, Mitochondrial/genetics , Microbial Viability , Mitochondria/enzymology , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Proteins/metabolism , Mutation, Missense , Proton Pumps/deficiency , Proton Pumps/genetics , Proton Pumps/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
11.
Hum Mol Genet ; 25(4): 715-27, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26692522

ABSTRACT

Mitochondria are organelles that have their own DNA (mitochondrial DNA, mtDNA) whose maintenance is necessary for the majority of ATP production in eukaryotic cells. Defects in mtDNA maintenance or integrity are responsible for numerous diseases. The DNA polymerase γ (POLG) ensures proper mtDNA replication and repair. Mutations in POLG are a major cause of mitochondrial disorders including hepatic insufficiency, Alpers syndrome, progressive external ophthalmoplegia, sensory neuropathy and ataxia. Mutations in POLG are also associated with parkinsonism. To date, no effective therapy is available. Based on the conservation of mitochondrial function from yeast to human, we used Saccharomyces cerevisiae and Caenorhabditis elegans as first pass filters to identify a chemical that suppresses mtDNA instability in cultured fibroblasts of a POLG-deficient patient. We showed that this unsuspected compound, clofilium tosylate (CLO), belonging to a class of anti-arrhythmic agents, prevents mtDNA loss of all yeast mitochondrial polymerase mutants tested, improves behavior and mtDNA content of polg-1-deficient worms and increases mtDNA content of quiescent POLG-deficient fibroblasts. Furthermore, the mode of action of the drug seems conserved as CLO increases POLG steady-state level in yeast and human cells. Two other anti-arrhythmic agents (FDA-approved) sharing common pharmacological properties and chemical structure also show potential benefit for POLG deficiency in C. elegans. Our findings provide evidence of the first mtDNA-stabilizing compound that may be an effective pharmacological alternative for the treatment of POLG-related diseases.


Subject(s)
DNA, Mitochondrial/genetics , DNA-Directed DNA Polymerase/genetics , Mitochondrial Diseases/drug therapy , Quaternary Ammonium Compounds/pharmacology , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/genetics , DNA Polymerase I/genetics , DNA Polymerase gamma , DNA Replication , DNA-Directed DNA Polymerase/metabolism , Fibroblasts/drug effects , Fibroblasts/enzymology , Humans , Mitochondrial Diseases/enzymology , Mitochondrial Diseases/genetics , Mutation , Phenotype , Primary Cell Culture , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
12.
Appl Microbiol Biotechnol ; 99(20): 8619-28, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26264138

ABSTRACT

We have previously shown that overexpression of the human tumor suppressor protein P53 causes cell death of the yeast Saccharomyces cerevisiae. P53 overproduction led to transcriptional downregulation of some yeast genes, such as the TRX1/2 thioredoxin system, which plays a key role in cell protection against various oxidative stresses induced by reactive oxygen species (ROS). In the present work, the impact of TRX2 overexpression on apoptosis mediated by p53 overexpression in yeast is investigated. In yeast cells expressing P53 under an inducible promoter together with TRX2 under a strong constitutive promoter, we showed that Tr2p overproduction reduced the apoptotic effect exerted by P53 and increased the viability of the P53-overproducing cells. Furthermore, measurements of ROS amounts by flow cytometry and fluorescence microscopy indicated that the TRX2 protein acted probably through its increased detoxifying activity on the P53-generated ROS. The steady-state level and activity of P53 were not affected by TRX2 overexpression, as shown by western blotting and functional analysis of separated alleles in yeast (FASAY), respectively. The growth inhibitory effect of P53 was partially reversed by the antioxidant N-acetylcysteine. Our data strengthen the idea that overexpression of a single gene (trx2) decreases the p53-mediated cell death by decreasing ROS accumulation.


Subject(s)
Gene Expression , Microbial Viability , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/physiology , Thioredoxins/genetics , Thioredoxins/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/toxicity , Apoptosis , Flow Cytometry , Humans , Microscopy, Fluorescence , Reactive Oxygen Species/analysis , Recombinant Proteins/genetics , Recombinant Proteins/toxicity , Saccharomyces cerevisiae/genetics
13.
Front Genet ; 6: 206, 2015.
Article in English | MEDLINE | ID: mdl-26124772

ABSTRACT

Isolated complex I deficiencies are one of the most commonly observed biochemical features in patients suffering from mitochondrial disorders. In the majority of these clinical cases the molecular bases of the diseases remain unknown suggesting the involvement of unidentified factors that are critical for complex I function. The Saccharomyces cerevisiae NDI1 gene, encoding the mitochondrial internal NADH dehydrogenase was previously shown to complement a complex I deficient strain in Caenorhabditis elegans with notable improvements in reproduction and whole organism respiration. These features indicate that Ndi1p can functionally integrate the respiratory chain, allowing complex I deficiency complementation. Taking into account the Ndi1p ability to bypass complex I, we evaluate the possibility to extend the range of defects/mutations causing complex I deficiencies that can be alleviated by NDI1 expression. We report here that NDI1 expressing animals unexpectedly exhibit a slightly shortened lifespan, a reduction in the progeny, and a depletion of the mitochondrial genome. However, Ndi1p is expressed and targeted to the mitochondria as a functional protein that confers rotenone resistance to those animals without affecting their respiration rate and ATP content. We show that the severe embryonic lethality level caused by the RNAi knockdowns of complex I structural subunit encoding genes (e.g., NDUFV1, NDUFS1, NDUFS6, NDUFS8, or GRIM-19 human orthologs) in wild type animals is significantly reduced in the Ndi1p expressing worm. All together these results open up the perspective to identify new genes involved in complex I function, assembly, or regulation by screening an RNAi library of genes leading to embryonic lethality that should be rescued by NDI1 expression.

14.
Dis Model Mech ; 8(6): 509-26, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26035862

ABSTRACT

Mitochondrial diseases are severe and largely untreatable. Owing to the many essential processes carried out by mitochondria and the complex cellular systems that support these processes, these diseases are diverse, pleiotropic, and challenging to study. Much of our current understanding of mitochondrial function and dysfunction comes from studies in the baker's yeast Saccharomyces cerevisiae. Because of its good fermenting capacity, S. cerevisiae can survive mutations that inactivate oxidative phosphorylation, has the ability to tolerate the complete loss of mitochondrial DNA (a property referred to as 'petite-positivity'), and is amenable to mitochondrial and nuclear genome manipulation. These attributes make it an excellent model system for studying and resolving the molecular basis of numerous mitochondrial diseases. Here, we review the invaluable insights this model organism has yielded about diseases caused by mitochondrial dysfunction, which ranges from primary defects in oxidative phosphorylation to metabolic disorders, as well as dysfunctions in maintaining the genome or in the dynamics of mitochondria. Owing to the high level of functional conservation between yeast and human mitochondrial genes, several yeast species have been instrumental in revealing the molecular mechanisms of pathogenic human mitochondrial gene mutations. Importantly, such insights have pointed to potential therapeutic targets, as have genetic and chemical screens using yeast.


Subject(s)
Mitochondrial Diseases/metabolism , Mitochondrial Diseases/therapy , Saccharomyces cerevisiae/metabolism , Animals , DNA, Fungal/metabolism , Humans , Mitochondria/metabolism , Models, Biological , Translational Research, Biomedical
15.
J Med Genet ; 51(12): 834-8, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25351951

ABSTRACT

BACKGROUND: Inherited optic neuropathy has been ascribed to mutations in mitochondrial fusion/fission dynamics genes, nuclear and mitochondrial DNA-encoded respiratory enzyme genes or nuclear genes of poorly known mitochondrial function. However, the disease causing gene remains unknown in many families. METHODS: We used exome sequencing in order to identify the gene responsible for isolated or syndromic optic atrophy in five patients from three independent families. RESULTS: We found homozygous or compound heterozygous missense and frameshift mutations in the gene encoding mitochondrial aconitase (ACO2), a tricarboxylic acid cycle enzyme, catalysing interconversion of citrate into isocitrate. Unlike wild type ACO2, all mutant ACO2 proteins failed to complement the respiratory growth of a yeast aco1-deletion strain. Retrospective studies using patient-derived cultured skin fibroblasts revealed various degrees of deficiency in ACO2 activity, but also in ACO1 cytosolic activity. CONCLUSIONS: Our study shows that autosomal recessive ACO2 mutations can cause either isolated or syndromic optic neuropathy. This observation identifies ACO2 as the second gene responsible for non-syndromic autosomal recessive optic neuropathies and provides evidence for a genetic overlap between isolated and syndromic forms, giving further support to the view that optic atrophy is a hallmark of defective mitochondrial energy supply.


Subject(s)
Aconitate Hydratase/genetics , Mutation , Optic Nerve Diseases/genetics , Aconitate Hydratase/metabolism , Adult , Brain/pathology , Child, Preschool , Citric Acid Cycle , Enzyme Activation , Exome , Fatal Outcome , Female , Gene Expression , Genes, Recessive , High-Throughput Nucleotide Sequencing , Humans , Magnetic Resonance Imaging , Male , Ophthalmoscopes , Optic Atrophy/diagnosis , Optic Atrophy/genetics , Optic Nerve Diseases/diagnosis , Optic Nerve Diseases/metabolism , Patient Outcome Assessment , Siblings
16.
PLoS Genet ; 10(5): e1004311, 2014 May.
Article in English | MEDLINE | ID: mdl-24786642

ABSTRACT

Impairment of the tightly regulated ossification process leads to a wide range of skeletal dysplasias and deciphering their molecular bases has contributed to the understanding of this complex process. Here, we report a homozygous mutation in the mitochondria-associated granulocyte macrophage colony stimulating factor-signaling gene (MAGMAS) in a novel and severe spondylodysplastic dysplasia. MAGMAS, also referred to as PAM16 (presequence translocase-associated motor 16), is a mitochondria-associated protein involved in preprotein translocation into the matrix. We show that MAGMAS is specifically expressed in trabecular bone and cartilage at early developmental stages and that the mutation leads to an instability of the protein. We further demonstrate that the mutation described here confers to yeast strains a temperature-sensitive phenotype, impairs the import of mitochondrial matrix pre-proteins and induces cell death. The finding of deleterious MAGMAS mutations in an early lethal skeletal dysplasia supports a key role for this mitochondrial protein in the ossification process.


Subject(s)
Bone Diseases, Developmental/genetics , Mitochondrial Proteins/physiology , Amino Acid Sequence , Animals , Bone Diseases, Developmental/diagnostic imaging , Exome , Female , Gene Expression Profiling , Humans , Male , Mitochondrial Precursor Protein Import Complex Proteins , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Molecular Sequence Data , Mutation, Missense , Pedigree , RNA, Messenger/genetics , Radiography , Saccharomyces cerevisiae/genetics , Sequence Homology, Amino Acid
17.
Mitochondrion ; 15: 59-64, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24462778

ABSTRACT

Lipoic acid metabolism defects are new metabolic disorders that cause neurological, cardiomuscular or pulmonary impairment. We report on a patient that presented with progressive neurological regression suggestive of an energetic disease, involving leukoencephalopathy with cysts. Elevated levels of glycine in plasma, urine and CSF associated with intermittent increases of lactate were consistent with a defect in lipoic acid metabolism. Support for the diagnosis was provided by pyruvate dehydrogenase deficiency and multiple mitochondrial respiratory chain deficiency in skin fibroblasts, as well as no lipoylated protein by western blot. Two mutations in the NFU1 gene confirmed the diagnosis. The p.Gly208Cys mutation has previously been reported suggesting a founder effect in Europe.


Subject(s)
Carrier Proteins/genetics , Cysts/genetics , Leukoencephalopathies/genetics , Propionic Acidemia/genetics , Cerebrospinal Fluid/chemistry , Child, Preschool , Europe , Female , Fibroblasts/enzymology , Humans , Lactates/analysis , Mitochondrial Diseases/metabolism , Plasma/chemistry , Protein Processing, Post-Translational , Proteins/chemistry , Pyruvate Dehydrogenase Complex Deficiency Disease/metabolism , Urine/chemistry
18.
Orphanet J Rare Dis ; 8: 192, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24341803

ABSTRACT

BACKGROUND: Synthesis and apoenzyme attachment of lipoic acid have emerged as a new complex metabolic pathway. Mutations in several genes involved in the lipoic acid de novo pathway have recently been described (i.e., LIAS, NFU1, BOLA3, IBA57), but no mutation was found so far in genes involved in the specific process of attachment of lipoic acid to apoenzymes pyruvate dehydrogenase (PDHc), α-ketoglutarate dehydrogenase (α-KGDHc) and branched chain α-keto acid dehydrogenase (BCKDHc) complexes. METHODS: Exome capture was performed in a boy who developed Leigh disease following a gastroenteritis and had combined PDH and α-KGDH deficiency with a unique amino acid profile that partly ressembled E3 subunit (dihydrolipoamide dehydrogenase / DLD) deficiency. Functional studies on patient fibroblasts were performed. Lipoic acid administration was tested on the LIPT1 ortholog lip3 deletion strain yeast and on patient fibroblasts. RESULTS: Exome sequencing identified two heterozygous mutations (c.875C > G and c.535A > G) in the LIPT1 gene that encodes a mitochondrial lipoyltransferase which is thought to catalyze the attachment of lipoic acid on PDHc, α-KGDHc, and BCKDHc. Anti-lipoic acid antibodies revealed absent expression of PDH E2, BCKDH E2 and α-KGDH E2 subunits. Accordingly, the production of 14CO2 by patient fibroblasts after incubation with 14Cglucose, 14Cbutyrate or 14C3OHbutyrate was very low compared to controls. cDNA transfection experiments on patient fibroblasts rescued PDH and α-KGDH activities and normalized the levels of pyruvate and 3OHbutyrate in cell supernatants. The yeast lip3 deletion strain showed improved growth on ethanol medium after lipoic acid supplementation and incubation of the patient fibroblasts with lipoic acid decreased lactate level in cell supernatants. CONCLUSION: We report here a putative case of impaired free or H protein-derived lipoic acid attachment due to LIPT1 mutations as a cause of PDH and α-KGDH deficiencies. Our study calls for renewed efforts to understand the mechanisms of pathology of lipoic acid-related defects and their heterogeneous biochemical expression, in order to devise efficient diagnostic procedures and possible therapies.


Subject(s)
Acyltransferases/genetics , Leigh Disease/genetics , Amino Acids/blood , Amino Acids/cerebrospinal fluid , Amino Acids/urine , Carrier Proteins/genetics , Cells, Cultured , Fibroblasts/metabolism , Humans , Immunoblotting , Ketoglutarate Dehydrogenase Complex/deficiency , Ketoglutarate Dehydrogenase Complex/genetics , Ketone Oxidoreductases/deficiency , Ketone Oxidoreductases/genetics , Leigh Disease/blood , Leigh Disease/urine , Pyruvate Dehydrogenase (Lipoamide)/genetics , Thioctic Acid/blood , Thioctic Acid/cerebrospinal fluid , Thioctic Acid/urine
19.
PLoS One ; 8(8): e70357, 2013.
Article in English | MEDLINE | ID: mdl-23936414

ABSTRACT

Decline of proteasome activity has been reported in mammals, flies and yeasts during aging. In the yeast Saccharomyces cerevisiae, the reduction of proteolysis in stationary phase is correlated with disassembly of the 26S proteasomes into their 20S and 19S subcomplexes. However a recent report showed that upon entry into the stationary phase, proteasome subunits massively re-localize from the nucleus into mobile cytoplasmic structures called proteasome storage granules (PSGs). Whether proteasome subunits in PSG are assembled into active complexes remains an open question that we addressed in the present study. We showed that a particular mutant of the RPN11 gene (rpn11-m1), encoding a proteasome lid subunit already known to exhibit proteasome assembly/stability defect in vitro, is unable to form PSGs and displays a reduced viability in stationary phase. Full restoration of long-term survival and PSG formation in rpn11-m1 cells can be achieved by the expression in trans of the last 45 amino acids of the C-terminal domain of Rpn11, which was moreover found to co-localize with PSGs. In addition, another rpn11 mutant leading to seven amino acids change in the Rpn11 C-terminal domain, which exhibits assembled-26S proteasomes, is able to form PSGs but with a delay compared to the wild type situation. Altogether, our findings indicate that PSGs are formed of fully assembled 26S proteasomes and suggest a critical role for the Rpn11 protein in this process.


Subject(s)
Endopeptidases/metabolism , Proteasome Endopeptidase Complex/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Sequence , Cytosol/metabolism , Endopeptidases/chemistry , Endopeptidases/genetics , Enzyme Stability , Molecular Sequence Data , Mutation , Protein Structure, Tertiary , Protein Subunits/metabolism , Protein Transport , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Survival Analysis
20.
J Inherit Metab Dis ; 35(6): 1119-28, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22481384

ABSTRACT

BACKGROUND: Recessive LPIN1 mutations were identified as a cause of severe rhabdomyolysis in pediatric patients. The human lipin family includes two other closely related members, lipin-2 and 3, which share strong homology and similar activity. The study aimed to determine the involvement of the LPIN family genes in a cohort of pediatric and adult patients (n = 171) presenting with muscular symptoms, ranging from severe (CK >10 000 UI/L) or moderate (CK <10 000 UI/L) rhabdomyolysis (n = 141) to exercise-induced myalgia (n = 30), and to report the clinical findings in patients harboring mutations. METHODS: Coding regions of LPIN1, LPIN2 and LPIN3 genes were sequenced using genomic or complementary DNAs. RESULTS: Eighteen patients harbored two LPIN1 mutations, including a frequent intragenic deletion. All presented with severe episodes of rhabdomyolysis, starting before age 6 years except two (8 and 42 years). Few patients also suffered from permanent muscle symptoms, including the eldest ones (≥ 40 years). Around 3/4 of muscle biopsies showed accumulation of lipid droplets. At least 40% of heterozygous relatives presented muscular myalgia. Nine heterozygous SNPs in LPIN family genes were identified in milder phenotypes (mild rhabdomyolysis or myalgia). These variants were non-functional in yeast complementation assay based on respiratory activity, except the LPIN3-P24L variant. CONCLUSION: LPIN1-related myolysis constitutes a major cause of early-onset rhabdomyolysis and occasionally in adults. Heterozygous LPIN1 mutations may cause mild muscular symptoms. No major defects of LPIN2 or LPIN3 genes were associated with muscular manifestations.


Subject(s)
Muscular Diseases/genetics , Mutation , Nuclear Proteins/genetics , Phosphatidate Phosphatase/genetics , Rhabdomyolysis/genetics , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , DNA, Complementary/genetics , Exercise , Female , Genes, Recessive , Genetic Complementation Test , Humans , Infant , Male , Middle Aged , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Diseases/pathology , Polymorphism, Single Nucleotide , Retrospective Studies , Rhabdomyolysis/pathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...